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Geometric diffusions for the analysis of data from 
sensor networks  
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Harmonic analysis on manifolds and graphs has recently led to mathematical developments in the field of data 
analysis. The resulting new tools can be used to compress and analyze large and complex data sets, such as 
those derived from sensor networks or neuronal activity datasets, obtained in the laboratory or through computer 
modeling. The nature of the algorithms (based on diffusion maps and connectivity strengths on graphs) 
possesses a certain analogy with neural information processing, and has the potential to provide inspiration for 
modeling and understanding biological organization in perception and memory formation. 
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Introduction 
Data processing and analysis has always been a vital component of scientific research; increasingly so in our 
times [1••–4••,5], when highly resolved sensing in space and time gives rise to huge, high-dimensional 
datasets. The same holds when the data are the result of fine-grained computational modeling, rather than 
sensor output. In neuroscience, there are myriad sources of very high dimensional data. Perhaps the 
simplest example is a single spike train, or a sequence of 100 to 10,000 such trains [6]. The situation 
becomes much more interesting (and much more complicated) when one considers evaluating the 
information in electrode arrays in, for example, the retina [7], the hippocampus [8,9]  or the motor cortex 
[10]. Apart from these foundational questions, ‘untangling the distributed code’ (e.g. [11,12]) is now a key 
question for developing man–machine interfaces [10,11], and is not unlike related questions for the analysis 
of EEG and MEG signals. The techniques described here should be relevant to many of these tasks, both 
for developing processing algorithms and for determining the level of structure and intrinsic information in 
the signals. The additional feature of extracting higher order concepts from data computationally resonates 
with the way such concepts are extracted from data physiologically. We comment on some such tentative 
‘cognitive processing’ features of our data processing algorithms. 

The mathematical theory underpinning these new data analysis algorithms is that of harmonic analysis on 

sets of data represented as points lying in n-dimensional Euclidean space, nR , and on graphs constructed 
using this data. These graphs, connecting data points in a way to be described below, are in a way 
reminiscent of the interconnectivity graphs of sensor nodes (or neurons) in which the strength of the 
connections represents a high affinity between nodes. The main challenge involving the analysis of such 
complex structures lies in the ability to explain the transition from local ‘affinities’ of massive sensor 
outputs, or data, to some higher order concepts, regions of influence and connectivities on a macroscopic 
scale. The mathematical theory described here leads to various computational methodologies useful in data 
analysis and machine learning and, as such, provides a powerful tool for empirical modeling. 
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One goal of this review is to present these developments in data analysis; a second goal is to provide some 
insight into mathematical processing mechanisms. These might be useful to the scientist studying 
empirical data processing and biological information processing in the formulation of potential models of 
neuronal organization (or sensor fusion) at different levels of granularity. Our approach gives rise to Markov 
processes on graphs constructed using the data; and uses spectral theory and eigenfunctions of these 
Markov processes [1••,2••], leading to a natural geometric organization of complex data sets, providing a 
‘nonlinear’ principal component analysis. We remark in passing that the top eigenfunction, corresponding 
to the highest eigenvalue, for the Web graph provides the ‘importance ranking’ used by ‘Google’® for 
webpage ranking, whereas the subsequent eigenfunctions provide a more detailed mapping. More 
importantly, we show how these eigenfunctions, viewed as a mathematical and computational tool, can be 
replaced by ‘aggregates of nodes’, equipped with a notion of multiscale affinity which can, in principle, be 
implemented biologically through various linking systems. This provides a potential theoretical mechanism 
for simple emergent organization and learning that might have biological relevance. Although related ideas 
appear in a variety of contexts of data analyses, such as spectral graph theory [13], manifold learning and 
nonlinear dimensionality reduction [14–17], we augment them by showing that the diffusion distances are 
key intrinsic geometric quantities linking spectral theory of Markov processes to the corresponding 
geometry of the data, relating localization in spectrum to localization in data space [2]. Existing 
dimensionality reduction techniques typically focus either on global or on local features of the data; our 
methodology integrates features at all scales in a coherent multiscale structure. 

Geometric diffusions for global structure definition of data 
In applied mathematics we often view ensembles of data as graphs with a large number of vertices, with 
each vertex being a data point (e.g. a visual stimulus), and edges connecting very similar data points (in an 
application-specific sense). For example, two visual stimuli could be considered similar if they excite a 
visual receptor in a very similar way. 

Discovering large-scale structures and extracting information from such graphs is, in general, a very 
challenging task. Often the data are high-dimensional, that is, represented by long strings of numbers 
(vectors); however, physical or other constraints force the set of points or their probability densities to be 
intrinsically lower-dimensional, so they can, in principle, be described by  a small number of degrees of 
freedom [1••,2••,14–17,18••,19••]. Our goal is to organize and process the data so as to reveal the low-
dimensional structure. We use diffusion semigroups to generate various multiscale inference (or affinity) 
geometries (ontologies). 

We show that appropriately selected eigenfunctions of Markov matrices describing local transitions, or 
affinities in the system, lead to coarse-grained, macroscopic structures at different scales. 

In particular, the leading eigenfunctions enable a low dimensional geometric embedding of the dataset into 
a lower-dimensional Euclidean space, so that the ordinary Euclidean distance in the embedding space 
measures intrinsic diffusion (inference, affinity or relevance) metrics of the data. 

The Euclidean correlation in nR , for large n  is, in general, not a good measure of affinity, except possibly 

for very close-by data points. This is the reason for the introduction of the ‘closeness’ parameter ε  in the 
formula below. The premise is that the Euclidean distance provides a meaningful measure of ‘affinity’ for 
data lying closer than a cutoff distance quantified by this ε ; and is meaningless for data beyond this cutoff. 
One of the main contributions is to find an embedding space such that the Euclidean distance in this space 
is truly representative of the closeness (‘affinity’) among the data. 

Mathematical background 
Think of a point iX  in Euclidean space as representing a string of outputs from a neuron labeled by i  

(data vector, sensor output stream, and so on). A matrix of local affinities can be constructed as: 
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The strength of such a data-correlation based affinity decays rapidly with the distance of outputs (other 
data affinities are possible, including chemical). We renormalize this matrix to a Markov matrix A  (or more 
precisely εA ), with sums of the entries of each row equaling one. A  measures local similarities, and 

corresponds to one step of a random walk on the data [1••,2••,20]; its powers tA correspond to propagation 
of the local similarities by the Markov process after t  steps (time) of the random walk. This random walk 
on the data gives rise to a geometric diffusion (analogous to the derivation of the diffusion equation from 
Brownian motion). For large t , all similarities are integrated along all paths, yielding information about 

global structures in the data. Remarkably, these can be efficiently computed: let )(Xφ=(i)φ ill  be the lth 

eigenvector of A  evaluated at data point i , satisfying ( ) ( )iφλ=iAφ lll
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called the ‘diffusion map’, embedding into mR  at time t . The square of the ‘diffusion distance’ at time t , 

measuring ‘divergence’ between nodes i  and j , is: 
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For large t  this can be computed very accurately using only the corresponding first few eigenfunctions, 

because only a few of the terms 2t
lλ  are above the level of precision of interest (Figure 1). This provides a 

diffusion map embedding of output data into a new low-dimensional Euclidean space, converting diffusion 
distance on the data points into Euclidean distance in the embedding space. 

As a first simple example of data reorganization provided by the diffusion embedding, we consider a 
sampled geometric hourglass surface, idealizing a set of data points with two weakly connected clusters, see 
Figure 2. We embed the point cloud into three-dimensional Euclidean space so that the diffusion distance 
in the original space can be computed as the ordinary Euclidean length of the chord connecting them in 
embedding space. Because the diffusion is slower through the bottleneck, the two components are farther 
apart in the diffusion metric. 

In Figure 3, we illustrate the organizational ability of the diffusion maps on a collection of images given in 
random order. The inputs are 2-D gray scale pictures of the object in ‘3D’ in various positions, each viewed 
as a 3232×  = 1024  dimensional vector. To calculate the embedding, one constructs the Markov matrix 
as above, and computes the first few eigenfunctions. The top two eigenfunctions reveal the orientation of 
‘3D’, and organize the data accordingly, see Figure 3. 

Next, we organize a heterogeneous material, consisting of two component materials (nodes, represented by 
circles and crosses), possessing different conductivities (Figure 4). Although the gross statistics of circles 
and crosses are identical on both lobes, the left lobe happens to have more highly conductive links, which 
reduces the diffusion distance between its constituent nodes. The left-to-right bottleneck increases the 
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diffusion distance between the two lobes, because there are fewer paths connecting the left and right lobe. 
The actual long-time affinity structure is described in terms of the eigenfunctions (Figure 4): on the left all 
points are tightly linked, whereas on the right they maintain some distance. The map has accounted for the 
preponderance of connections through all paths of all lengths between the nodes. 

The next example (Figure 5) represents an organization of the configuration space of lip images that arise 
from a single speaker. No structure is assumed. The local similarity between images, viewed as high-
dimensional vectors, organizes them as above in the first three diffusion coordinates. Different locations in 
the diffusion plot correspond to different clusters of strongly related lip images. 

Dynamic learning through diffusion geometry 
We now use these ideas to describe various learning methodologies in which the diffusion mechanism is 
iteratively adjusted to improve accuracy. 

First, we generalize the basic affinity matrix to enable purely empirical and dynamical modeling and 
learning. 

Assume that a data point set (sensor output, individual neuron output strings, and so on) has been 
generated by a process, the local statistical characteristics of which vary from location to location. For each 
point x , we view the neighboring data points as generated by a local unknown diffusion process, the 

probability density of which is estimated by (y)px  = y))(xq(c xx −−exp , where xq  is a quadratic form 

obtained empirically (for example by local principal component analysis [21]) from the data in a small 
‘neighborhood’ of  x . 

We use the matrix ( ) ( )zx,a=y(y)pp zx
y
∑  to model the corresponding data-driven diffusion. The 

distance defined by this kernel is ( ) | | 2/12 )(y)p(y)p(=zx,d zx
y

−∑ , which can be viewed as the 

natural distance on the ‘statistical tangent space’ to the point cloud. 

In a dynamical learning situation we can start with a data point x , use its Euclidean neighborhood to 

define (y)px  at x , then find the z s that can be reached from x  to compute locally ( zx,a ) . We then 

propagate a density in a neighborhood of x via powers of A , stopping when the propagation by diffusion 
slows down. 

When labels are available, separating (a subset of) the data in different classes, the information they provide 
can be incorporated in xp , by locally warping the metric so that the diffusion starting in one class stays in 

that class without leaking to others. This could be obtained, for example, by using any kind of local 
discriminant analysis [21] to build a local metric, the ‘fast’ directions of which are parallel to the boundary 
between classes and the ‘slow’ directions of which are transverse to the class boundaries. We also suggest 
that an iterative, partially supervised procedure can lead to good results in many practical situations. 

In Figure 6 we represent a diffusion from labeled samples, from three different types of tissue, seeking to 
identify all related samples in the image. Here, each pixel has an absorption spectrum, with 128  spectral 
dimensions. The middle image shows the failure of conventional ‘nearest neighbor’ classification, whereas 
the diffusion distance yields a better classification. 

Multiscale analysis of diffusion and spectral analysis 
Our goal is to replace the analytic construction of the eigenfunctions by direct combinatorial link 
organizations. We show that the emergent organization discovered above with the help of the 
eigenfunctions can be translated into a multiscale hierarchical geometry of data points. This point of view 
can be used as a guide for theoretical processing models in biological systems. 
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The first few eigenfunctions of the matrix  (or equivalently, of the Laplacian on a graph [13]) detect and 
organize global structures on the data-based graph [1,16]. It is often the case, in biological and other 
complex systems, that several organizational structures exist at different ‘scales’. Sensor outputs can be 
grouped (compressed) into ensembles at different scales of complexity, to perform tasks at different levels 
of complexity or abstraction, and integrating the tasks performed at lower levels of complexity. 

A

We sketch a technique for constructing these sets of structures at different scales on a set of outputs or 
data, starting from the finest granularity, and building up to more complex structures, all inter-related at 
each scale and across scales, culminating in the global structures detected and described by the analysis 
with eigenfunctions described above. In the case of clouds of data points, this translates into a multiscale 
analysis of the cloud of points; at each scale we have a set of aggregates of points, and relationships among 
these groups are determined by a power of the diffusion operator at that scale. We claim (see [2]) that the 
embedding provided by the eigenfunctions can also be achieved by a hierarchical regrouping of data, using 
affinity at different diffusion time scales as a grouping mechanism. 

The construction alluded to above is most easily explained in terms of conventional semantic analysis of 
text documents, each document being a data point. Each document has coordinates that represent the 
frequency of occurrence of words in it. We correlate only documents with strong similarity of vocabulary. 
Given a document x, we can build a folder around it of documents with strong immediate affinity (i.e. 
nearest neighbors). This becomes a folder at ‘scale 1’. To obtain a folder at ‘scale 2’ we consider all 
documents, , that are nearest neighbors to a nearest neighbor of y x (i.e. they are linked by a chain of 
length 2 to x ), and measure affinity as the sum of strength of all these chains of length 2 linking  to y x ; 
we keep only those, , with strong affinity to form a folder at scale 2. We repeat this process for all chains 

of length 4 and less. One can easily build a directory structure of folders at all dyadic scales, with folders at 
a fixed scale being disjoint. From our point of view, every sensor (every neuron) can be viewed as a 
document for which a string of sensor outputs are the coordinates (elementary semantic content), whereas 
the folders are groups of outputs combining similar or highly related outputs at different resolution (or 
abstraction) levels. In Figure 7 the elementary documents are various 6x6 patches of the image in the first 
panel. The folders at different levels of resolution correspond to higher level features of the image. 

y

To relate this description to a mathematical formulation we start by observing, as above (Figure 1), that the 

numerical rank of εt
ε )( /A  decreases rapidly as t  increases. In particular, if we consider the 

expansions (y)(x)φφλ=y)(x,a ii
ε

it ∑ /2t , for t= ε2 j
, obtained by successive squaring, then for any 

fixed precision the summation can be restricted to smaller and smaller sets of indices. 

Secondly, the columns y)(x,a t  of the matrix εt
ε )( /A represent the probability of transition in t steps 

from x to . y

We can also interpret the x  column of the matrix , 
j

A2 y)(x,a j2
, as a rank of affinity between sensor 

(neuron) output x  and sensor (neuron) output y  at scale j , and the collection of points y , such that 

δ>y)(x,a j2
 could represent all sensor (neuron) outputs y  similar to x . 

We present a very simple method for obtaining a hierarchical ‘sensor folder’ (or ‘neuron group’) 
organization, as described above for the text documents. A minimal collection of clusters organizing the 

whole set of points at different levels of granularity is obtained as follows: let  be a maximal 

subcollection of points in

}{x 1+j
k

{ }jkx (key-points at scale j ), such that , 

where  are the original points. Then any point is at distance at most at scale 

)x,(xd +j
i

j
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11
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k 2/1 j  from one of the 
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selected ‘key-points’ at that scale, enabling us to create a document folder labeled by the key-point. It is 
easy to modify this construction to obtain a tree of non-overlapping folders. 

This construction, when applied to text documents (equipped with semantic coordinates), builds an 
automatic folder structure with corresponding key documents characterizing the folders. 

A detailed, refined construction of scaling functions (columns of ) and wavelets representing this 
multiscale organization of the graph is provided in Coifman and Maggioni [2], and connections with related 
algorithms in numerical analysis in Brandt [22]. This analysis of aggregation at different times (and 
corresponding scales), enables us to perform multiscale wavelet analysis on manifolds and graphs in a 
natural way. Applications include compression of functions on the dataset, denoising of such functions, and 
learning (in the sense of classification and regression) of functions on the dataset. Although the description 
of the analysis given above refers only to organization of existing data, we point out that the tools 
developed also enable the incorporation of new data points into the structure in a consistent way, and the 
extension of functions modeled on the data to new sensor outputs [1••,2••,4••]. 

tA

The multiscale construction enables structure to emerge at different scales as a function of connectivity. In 
Figure 7 we show several small patches from a simple image. If all patches are considered, edge filters (at 
the finer scales) and blob filters (at the coarser scales) naturally arise. Note the clear curvature in their 
structure [23]. Restricting the number of patches would result in more V1-like ‘receptive-fields’ [24–27]. 

Stochasticity and coherence 
Global geometric diffusions can be applied to data driven by a Langevin equation [19••] that is used to 
model many biological systems [28–30], for example, stochastic unsynchronized neuronal pulse trains. The 
macroscopic probability density behavior of such systems is governed by the Fokker–Planck  operator 
[19••], the eigenfunctions of which can be empirically approximated as described above, leading to efficient 
descriptions of likely, long-time probability configurations and geometries [2••,9,19]. The connections 
between Bayesian learning and Fokker-Planck equations date back to Verrelst [31] and references therein. 

Diffusion wavelets and global diffusion have both been applied successfully to learning processes in a 
variety of (stochastic) environments, where an agent (e.g. robot) learns optimal behavior for achieving 
certain tasks from past experiences [18••]. 

Conclusions 
Diffusion geometries can reveal structure in data at different levels of organization. Because many sources 
of data in neuroscience are high-dimensional, understanding their primary, low-dimensional intrinsic 
structure can be insightful. It has been indicated that image patch structure can suggest receptive field 
properties, and that different properties emerge at different levels. The intrinsic dimensionality can also be 
useful for efficient data analysis. Many applications of these techniques in neuroscience remain to be tried, 
from spike train analysis to olfaction and the electroencephalogram (EEG). But perhaps more exciting is 
the possibility that emergent structure across levels will open a theoretical door into cognitive neuroscience 
and memory organization. 

Matlab scripts for the computations involved in diffusion maps and multiscale analysis of diffusion are 
available online [32] or upon request from M Maggioni.  
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Figure 1   
The spectra of powers of . Some examples of the spectra of the dyadic powers of A A . The x axis is the index of the 
eigenvalue, and the y axis the eigenvalue itself. Eigenvalues are positive and are arranged in nonincreasing order. 

 
 
Figure 2  
Diffusion embedding of a sampled hourglass manifold. (a) An original set of points sampled on a hourglass manifold, as a 
model for two weakly-connected clusters C1 and C2, and (b) their embedding using the eigenfunctions of the diffusion matrix 
A . The Euclidean distance in image in (b) is equivalent to large-time t diffusion distance on the original set of points in (a). The 

two ‘clusters’ get flattened and move further apart in the new space. The axes just provide a reference frame.  
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Figure 3  
Diffusion embedding of a set of pictures of “3D”. Organization emerging from a collection of images given in random order 

(data = ). (a) The images are displayed according to their location in the two-dimensional diffusion embedding }{ ix
))(),(( 21 ii xx φφ , displayed in (b). The coordinates capture (perceive) the orientation of the picture in 3D.  

Current Opinion in Neurobiology

(a) (b)

 
  
Figure 4  
Diffusion embedding of a heterogeneous material. (a) A heterogeneous material and (b) its long-term diffusion embedding 

))(),(( 32 ii xx φφ . This structure could be interpreted as a map of trees (circles) and shrubs (crosses), with the links 
representing the probability of fire propagating among them. From (b) it is clear that the risk of fire propagating from top to 
bottom is higher on the left side of the forest. Color is included so that points can be matched across the two pictures. 
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Figure 5  
Diffusion embedding of images of lips. The lip alphabet is learnt from a set of pictures of the lips of a speaker. The manifold 
structure and its parameters are parametrized by the three top eigenfunctions (axes in the figure) of the diffusion, and this 
parametrization can be used to lip-read. An interpretation of the low order eigenfunctions is openness of the mouth and 
exposure of teeth. 
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Figure 6  
Classification of tissue types in a hyperspectral image through diffusion. (a) A slice of a hyperspectral image with three 
selected regions that correspond to three different biologically significant types of tissue: nuclei (blue), cytoplasm of epidermal 
cells (pink) and collagen in the underlying dermis (green). (b) Predictions of tissue type by a standard nearest neighbor 
classifier, trained on the set in (a). (c) Predictions made by the diffusion classifier described above, with the training set 
represented in (a). 
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Figure 7 
Multiscale folders. (a) Original picture. (b) A subset of 66× pixel patches extracted from the image. (c) A folder at scale 2 is 
a weighted aggregate of patches, representing a higher level feature. (d) Another folder at scale 2 is an edge detector. (e and 
f) Two folders at scale 3 that represent weighted aggregates of patches (‘attributes’ or ‘features’) at an even coarser scale. 
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Data Fusion and Multi-Cue Data Matching by
Diffusion Maps

Stéphane Lafon1, Yosi Keller2 and Ronald R. Coifman2

Abstract

Data fusion and multi-cue data matching are fundamental tasks of high-dimensional data analysis. In this
paper, we apply the recently introduced diffusion framework to address these tasks. Our contribution is three-fold.
First, we present the Laplace-Beltrami approach for computing density invariant embeddings which are essential
for integrating different sources of data. Second, we describe a refinement of the Nyström extension algorithm
called “geometric harmonics”. We also explain how to use this tool for data assimilation. Finally, we introduce a
multi-cue data matching scheme based on nonlinear spectral graphs alignment. The effectiveness of the presented
schemes is validated by applying it to the problems of lip-reading and image sequence alignment.

Index Terms

Pattern matching, graph theory, graph algorithms, Markov processes, machine learning, data mining, image
databases.

I. I NTRODUCTION

The processing of massive high-dimensional data sets is a contemporary challenge. Suppose that a
sources produces high-dimensional data{x1, ..., xn} that we wish to analyze. For instance, each data
point could be the frames of a movie produced by a digital camera, or the pixels of a hyperspectral image.
When dealing with this type of data, the high-dimensionality is an obstacle for any efficient processing of
the data. Indeed, many classical data processing algorithms have a computational complexity that grows
exponentially with the dimension (this is the so-called “curse of dimensionality”). On the other hand, the
sources may only enjoy a limited number of degrees of freedom. This means that most of the variables
that describe each data points are highly correlated, at least locally, or equivalently, that the data set has a
low intrinsic dimensionality. In this case, the high-dimensional representation of the data is an unfortunate
(but often unavoidable) artifact of the choice of sensors or the acquisition device. Therefore it should be
possible to obtain low-dimensional representations of the samples. Note that since the correlation between
variables might only be local, classical global dimension reduction methods like Principal Component
Analysis and Multidimensional Scaling do not provide, in general, an efficient dimension reduction.

First introduced in the context of manifold learning, eigenmaps techniques [1], [2], [3], [4] are becoming
increasingly popular as they overcome this problem. Indeed, they allow one to perform a nonlinear
reduction of the dimension by providing a parametrization of the data set that preserves neighborhoods.
However, the new representation that one obtains is highly sensitive to the way the data points were
originally sampled. More precisely, if the data are assumed to approximately lie on a manifold, then the
eigenmap representation depends on the density of the points on this manifold [5]. This issue is of critical
importance in applications as one often needs tomerge datathat were produced by the same source but
acquired with different devices or sensors, at various sampling rates and possibly on different occasions. In
that case, it is necessary to have a canonical representation of the data that retains the intrinsic constraints
of the samples (e.g. manifold geometry) regardless of the particular distribution of the datasets sampled
by different devices.
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Another important issue is that ofdata matching. This question arises when one needs to establish a
correspondence between two data sets resulting from the same fundamental source. For instance, consider
the problem of matching pixels of a stereo image pair. One can form a graph for each image, where pixels
constitute the nodes, and where edges are weighted according to the local features in the image. The
problem now boils down to matching nodes between two graphs. Note that this situation is an instance of
multi-sensor integration problem, in which one needs to find the correspondence between data captured by
different sensors. In some applications, like fraud detection, synchronizing data sets is used for detecting
discrepancies rather than similarities between data sets.

The out-of-sample extension problem is another aspect of the data fusion problem. The idea is to extend
a function known on a training set to a new point using both the target function and the geometry of
the training domain. The new point and the corresponding value of the function can then be assimilated
to the training set. This is an essential component in any scheme that agglomerates knowledge over an
initial data set and then applies the inferred structure to new data. Recently, Belkinet al have developed
a solution to this problem via the concept of manifold regularization [6]. Earlier, several authors used
the Nyström extension procedure in the Machine Learning context [7], [8] in order to extend eigenmap
coordinates. In both cases, the question of the scale of the extension kernel remains unanswered. In other
words, given an empirical function on a data set, to what distance to the training set can this function
be extended ? In particular, given the spectral embedding of the data set, which kernel should be used to
extend it?

By relating the frequency content of the target function on the training set to the extrinsic Fourier
analysis, Coifmanet al provide an answer to this question [9]. They developed the idea of “geometric
harmonics” based on the Nyström extension at different scales, providing a multiscale extension scheme
for empirical functions. We apply this concept to the extension of spectral embeddings and show that the
extension has to be conducted using a specially designed kernel which differs from the eigenmap kernel.

In this article, we show that the questions discussed above can be efficiently addressed by the general
diffusion framework introduced in [5], [10], [11]. The main idea is that, just like for eigenmaps methods,
eigenvectors of Markov matrices can be used to embed any graph into a Euclidean space and achieve
dimension reduction. Building on these ideas, the contribution of this paper is three-fold:

• First, we show that by carefully normalizing the Markov matrix, the embedding can be made invariant
to the density of the sampled data points, thus solving the problem of data fusion encountered with
other eigenmaps methods.

• Then, we address the problem of out-of-sample extension, and we explain how to adaptively extend
empirical functions to new samples using the geometric harmonics. In particular this allows us to
extend the diffusion coordinates to new data points.

• Last, we take advantage of the density-invariant representation of data sets provided by the diffusion
coordinates to derive a simple data matching algorithm based on geometrical embeddings alignment.

The proposed scheme is experimentally verified by applying it to visual data analysis. First, we
address the problem of automatic lip-reading by embedding the lips images using the Laplace-Beltrami
eigenfunctions and deriving an automatic lip-reading scheme where new data is assimilated using geometric
harmonics. Second, we demonstrate the multi-cue data matching aspect of our work by matching image
sequences corresponding to similar head motions.

This paper is organized as follows: we start by recalling the diffusion framework, and the notion of
diffusion maps in Section II-A. We then explain in Section II-B how to normalize the diffusion kernel in
order to separate the geometry (constraints) of the data from the distribution of the points. We describe the
out-of-sample extension procedure via the geometric harmonics in Section II-C and present a nonlinear
algorithms for matching two data sets in Section II-D. Last, we illustrate these ideas by applying it to
lip-reading and sequence alignment in Section III.
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II. T HE DIFFUSION FRAMEWORK

We start by reviewing the density-invariant embedding and out-of-sample extension schemes (previously
introduced in [5] and [9]) in Sections II-B and II-C, respectively. To exemplify their applicability to high-
dimensional data processing and learning, we apply them to derive a novel high-dimensional data alignment
algorithm in Section II-D.

A. Diffusion maps and diffusion distances

Let Ω = {x1, ..., xn} be a set ofn data points. In this section, we recall the diffusion framework as
described in [5], [12], [13]. The main point of this set of techniques is to introduce a useful metric on
data sets based on the connectivity of points within the graph of the data, and also to provide coordinates
on the data set that reorganize the points according to this metric.

The first step in our construction is to view the data pointsΩ = {x1, ..., xn} as being the nodes of
a symmetric graph in which any two nodesxi and xj are connected by an edge. The strength of this
connection is measured by a non-negative weightw(xi, xj) that reflects the similarity betweenxi andxj.
The very notion of similarity between two data points is completely application-driven. In many situations
however, each data point is a collection of continuous numerical measurements and, maybe after rescaling
some of the features, it can be thought of as a point in a Euclidean feature space. In this case, similarity
can be measured in terms of closeness in this space, and it is custom to weight the edge betweenxi and
xj by exp(−‖xi − xj‖2/ε), whereε > 0 is a scale parameter. This choice corresponds to the belief that
the only relevant information lies in local distance measurements. Indeed,xi andxj will be numerically
connected if they are sufficiently close. In diffusion kernels, graphs represent the structures of the input
spaces, and the vertices are the objects to be classified. In addition, Belkin and Niyogi [2] explain that, in
the case of a data set approximately lying on a submanifold, this choice corresponds to an approximation
of the heat kernel on the submanifold. Last, in [5], it is shown that any weight of the formh(‖xi− xj‖2)
(whereh decays sufficiently fast at infinity) allows to approximate the heat kernel.

More generally, we allow ourselves to consider arbitrary weight functionsw(·, ·) that verify the following
two conditions1, for all x andy in Ω:

• it is symmetric:w(x, y) = w(x, y),
• it is pointwise non-negative:w(x, y) ≥ 0.
This level of generality allows to take into account the case when data points are represented by a

collection of categorical features. In this situation, it can be useful to employ a Gaussian kernel with
a Hamming distance. But rather than to give a list of recipes, we would like to underline the fact that
the choice of the weight functionshould be entirely application-driven. The weight function or kernel
describes the first-order interaction between the data points as it defines the nearest neighbor structures in
the graph. It should capture a notion of similarity as meaningful as possible with respect to the application,
and therefore could very well take into account any type of prior knowledge on the data. The analysis of
the data provided by the diffusion techniques depends heavily on the choice of the weight function. Last,
note that the only real requirement for our technique to be applicable is to be able to define alocal notion
of similarity between the point. In other words, one must be able to answer the question of whether two
points are (very) similar or not. This is a much simpler question than having to define aglobal distance
between all pairs of points.

Following a classical construction in spectral graph theory [15], namely the normalized graph Laplacian,
we now create a random walk on the data setΩ by forming the following kernel:

p1(x, y) =
w(x, y)

d(x)
,

whered(x) =
∑

z∈Ω w(x, z) is the degree of nodex.

1Sincew(·, ·) is supposed to represent the similarity between data points, it will be fair to assume thatw(x, x) > 0
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Since we have thatp1(x, y) ≥ 0 and
∑

y∈Ω p1(x, y) = 1, the quantityp1(x, y) can be interpreted as the
probability for a random walker to jump fromx to y in a single time step. IfP is then × n matrix of
transition of this Markov chain, then taking powers of this matrix amounts to running the chain forward
in time. Let pt(·, ·) be the kernel corresponding to thetth power of the matrixP . In other words,pt(·, ·)
describes the probabilities of transition int time steps.

The asymptotic behavior of this random walk has been used to find clusters in the data set [15], [16],
[17], where the first non-constant eigenfunction is used as a classification function into two clusters. This
was justified as a relaxation of a discrete problem of finding an optimal cut in a graph [16]. This approach
was later generalized to using more eigenvectors in order to compute a larger number of clusters (see for
instance [18], [19], [13]). Several papers form machine learning (in particular [14]) have underlined the
connections and applications of the graph Laplacian to machine learning. Within the manifold learning
community, the first few eigenvectors of this Markov chain have been employed for dimensionality
reduction. In [20], [2] Belkin and Niyogi showed that when data is uniformly sampled from a low-
dimensional manifold, the first few eigenvectors ofP are discrete approximations of the eigenfunctions
of the Laplace-Beltrami operator on the manifold, thus providing a mathematical justification for their
use in this case.

If the graph is connected, then fort = +∞ this Markov chain is governed by a unique stationary
distributionφ0 (see appendix I), which means that for allx andy,

lim
t→+∞

pt(x, y) = φ0(y) .

The vectorφ0 is the top left eigenvector ofP , i.e., φT
0 P = φT

0 , and it can be verified thatφ0(y) is given
by

φ0(y) =
d(y)∑

z∈Ω d(z)
.

The pre-asymptotic regime is governed according to the following eigendecomposition [12]:

pt(x, y) =
∑

l≥0

λt
lψl(x)φl(y) , (1)

where {λl} is the sequence of eigenvalues ofP (with |λ0| ≥ |λ1| ≥ ...) and {φl} and {ψl} are the
corresponding biorthogonal left and right eigenvectors (see appendix II for a proof). Furthermore, because
of the spectrum decay, only a few terms are needed to achieve a given relative accuracyδ > 0 in the
previous sum.

Unifying ideas from Markov chains and potential theory, thediffusion distancebetween two pointsx
andz was introduced in [12], [5] as

D2
t (x, z) =

∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
. (2)

This quantity is simply a weightedL2 distance between the conditional probabilitiespt(x, ·), andpt(z, ·).
These probabilities can be thought of as features attached to the pointsx and z, and they measure the
influence or interaction of these two nodes with the rest of the graph.

By increasingt, one propagates the local or short-term influence of each node to its nearest neighbors,
and this means thatt also plays the role of a scale parameter. The comparison of these conditional
probabilities introduces a notion of proximity that accounts for the connectivity of the points in the graph.
In particular, unlike the shortest path, or geodesic distance, this metric is robust to noise as it involves an
integration along all paths of lengtht starting fromx or z. Empirical evidence supporting this claim is
provided in [13]. The diffusion distance incorporates the notions of mixing time and clusterness used in
classical graph theory [21].
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The connection between the diffusion distance and the eigenvectors goes as follows (see appendix II):

D2
t (x, z) =

∑

l≥1

λ2t
l (ψl(x)− ψl(z))2 . (3)

Note that ψ0 does not appear in the sum because it is constant. This identity means that the right
eigenvectors can be used to compute the diffusion distance. The diffusion distance therefore generalizes
the use of the eigenvectors for finding bottlenecks and clusters in the graph [21], and extends this approach
by taking into account more than just the second largest eigenvalue.

Furthermore, and as mentioned before, because of the spectrum decay, only a few terms are needed to
achieve a given relative accuracyδ > 0 in the previous sum. Letm(t) be the number of terms retained,
and define the diffusion map

Ψt : x 7−→ (
λt

1ψ1(x), λt
2ψ2(x), . . . , λt

m(t)ψm(t)(x)
)T

. (4)

This mapping provides coordinates on the data setΩ, and embeds then data points into the Euclidean
spaceRm(t). In addition, the spectrum decay is the reason why dimension reduction can be achieved.
This method constitutes a universal and data-driven way to represent a graph or any generic data set as a
cloud of points in a Euclidean space. We also obtain a complete parametrization of the data that captures
relevant modes of variability. Moreover, the dimensionm(t) of the new representation only depends on the
properties of the random walk on the data, and not on the number of features of the original representation
of the data. In particular, if we increaset, thenm(t) decreases and we capture larger-scale structures in
the data.

B. Data merging using the Laplace-Beltrami normalization

We now direct our attention to the case when the original data pointsΩ = {x1, ..., xn} are assumed2 to
approximately lie on a submanifoldM of Rd. The so called “manifold model” holds for a large variety of
situations, such as when the data is produced by a source controlled by a few free continuous parameters.
For instance, consider the rotation of a human head and the lips motion of a speaker. We will study these
examples later in this paper.

On the manifoldM, the data points were sampled with a densityq(·) that may reflect some important
aspect of the phenomenon that generated the data. For instance, as described in [12], for some data sets,
the density is related to the free energy surface that governs the samples. On the other hand, the density
may depend on the acquisition process and may be unrelated to intrinsic geometry or dynamics of the
underlying phenomenon. In this situation, the distribution of the points is an artifact of the sampling
process, and consequently, any “good” representation of the data should be invariant to the density.

Classical eigenmap methods provide an embedding that combines the information of both the density
and geometry. For instance, with the Laplacian eigenmaps [2], one starts by forming the graph with
Gaussian weightswε(x, y) = exp(−‖x − y‖2/ε), and then constructs the random walk as described in
the previous section. The eigenvectors are then used to embed the data set into a Euclidean space. It was
shown in [5] that in the large sample limitn → +∞ and small scaleε → 0, the eigenvectors tend to
those of the Schrödinger operator∆ + E, where∆ is the Laplace-Beltrami operator onM, andE is a
scalar potential that depends on the densityq. As a consequence, the Laplacian eigenmaps representation
of the data heavily depends on the density of the data points. In particular, it makes it impossible to fuse
two data sets obtained from the same sensors but with different densities.

In order to solve this problem, we suggest to renormalize the Gaussian edge weightswε(·, ·) with an
estimate of the density and to form the random walk on this new graph. This is summarized in Algorithm
1.

2Note that the density normalization that we describe in this section can be applied to more general structures such as a cloud of points.
In this case, the diffusion coordinates will be invariant to the density of the points within this cloud.
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Algorithm 1 Approximation of the Laplace-Beltrami diffusion

1: Start with a rotation-invariant kernelwε(x, y) = h
(
‖x−y‖2

ε

)
.

2: Let
qε(x) ,

∑
y∈Ω

wε(x, y) ,

and form the new kernel

w̃ε(x, y) =
wε(x, y)

qε(x)qε(y)
. (5)

3: Apply the normalized graph Laplacian construction to this kernel,i.e., set

dε(x) =
∑
z∈Ω

w̃ε(x, y) ,

and define the anisotropic transition kernel

pε(x, y) =
w̃ε(x, y)

dε(x)
.

Let Pε be the transition matrix with entriespε(·, ·). The asymptotics forPε are given in the following
theorem.

Theorem 1:In the limit of large sample and small scales, we have

lim
ε→0

lim
n→+∞

I − Pε

ε
= ∆ .

In particular, the eigenvectors ofPε tend to those of the Laplace-Beltrami operator onM. We refer to
[5] for a proof. A similar analysis for the case of a uniform densityq ≡ 1 is provided in [2], [22].

This result shows that the diffusion embedding that one obtains from an appropriately renormalized
Gaussian kernel does not depend on the densityq of the data points ofM. This algorithm allows one to
successfully capture the nonlinear constraints governing the data, independently from the distribution of
the points. In other words, it separates the geometry of the manifold from the density.

C. Out-of-sample extension and the geometric harmonics

In most applications, it is essential to be able to extend the low-dimensional representation computed
on a training set to new samples. LetΩ be a data set andΨt be its diffusion embedding map. We now
present the geometric harmonic scheme that allows us to extendΨt to a new data set̃Ω. Since we need
to relate the new samples to the training set, we will assume thatΩ is a subset of a Euclidean spaceRd.

As mentioned in the introduction, the Nyström extension method is a popular technique employed in
the machine learning community [7], [8] for the extension of empirical functions from the training set to
new samples. As we discuss later, this method suffers from several drawbacks, and the scheme that we
present in this section aims at solving these problems.

For the sake of completeness, we first recall the idea of Nyström extension [23]. We then point out its
weaknesses, present our geometric harmonics extension scheme and explain how it solves the problems of
the Nyström extension. Letσ > 0 be a scale of extension, and consider the eigenvectors and eigenvalues
of a Gaussian kernel3 of width σ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω .

3In order to simplify our presentation of the extension algorithm, we choose to work with a Gaussian kernel. In general, one can use any
symmetric kernel with an exponential decay.
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Since the kernel can be evaluated in the entire space, it is possible to take anyx ∈ Rd in the right-hand
side of this identity. This yields the following definition of the Nyström extension ofϕl from Ω to Rd:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd . (6)

Note thatϕl is being extended to a distance proportional toσ from the training setΩ. Beyond this distance,
the extension numerically vanishes.

We now know how to extend the eigenfunctions of the kernel, and since these eigenfunctions form a
basis of the set of functions on the training set, any functionf on the training set can be decomposed as
the sum

f(x) =
∑

l

〈ϕl, f〉ϕl(x) wherex ∈ Ω ,

and we can define the Nytström extension off to the rest ofRd to be

f(x) ,
∑

l

〈ϕl, f〉ϕl(x) wherex ∈ Rd . (7)

This scheme seems very attractive, but it raises the question of the choice of the kernel of extension. In
our exposition above, we considered a Gaussian of widthσ, which implies that functions will be extended
to a distance proportional toσ (the extension numerically vanishes beyond a multiple of this distance).
Classically (see [7], [8]), when extending eigenmaps, the kernel being used for the extension is the same
as the one employed for the computation of the eigenmaps on the training set. The focal point of the
extension scheme that we now present is precisely to contradict this approach. Indeed, when computing
the diffusion embedding or any other type of Laplacian eigenmap, one strives for using as small a scale√

ε as possible. The reason behind this is that, as shown in Theorem 1 and in [2], [22], [5], in the limit
of small scales, the diffusion maps approximate the eigenvectors of the Laplace-Beltrami, allowing to
capture the geometry of the underlying structure of the data set (such as the manifold geometry if there is
an underlying manifold). On the contrary, when extending the diffusion coordinates off the training set,
it is our interest to extend them as far as possible in order to maximize their generalization power. This
has two consequences:

• The scaleσ of the kernel used for extending should be as large as possible.
• This scale should not be the same for all functions that we are trying to extend. Indeed, we expect

the scale of extension to be related to the complexity of the function to be extended. Low-complexity
functions should be easy to extend very far from the training set. For instance the constant function
on Ω is the simplest function on the training set, and should be extendable to the entire spaceRd.
On the contrary, a function with wild variations onΩ should have a limited range of extension, as
their values off the training set are more difficult to predict.

These two observations give rise to the idea of adapting the scale of extension (and hence the kernel)
to the functionf to be extended. Therefore, all we need now is a criterion for determining the maximum
scale of extension forf . To this end, fixσ > 0, and observe that in Equation 6,µl → 0 as l → +∞,
which implies that the Nyström extension scheme described by Equation 7 is ill-conditioned. Of course,
we can circumvent this problem if, in the same sum, we only retain the terms corresponding toµ0/µl

smaller than a given thresholdη > 0:

f(x) ,
∑

l:µ0<ηµl

〈ϕl, f〉ϕl(x) wherex ∈ Rd . (8)

This way, the extension procedure has a condition number less than toη, and this variable plays the role
of a regularization parameter. However,f andf no longer coincide onΩ, which means thatf is no longer
an extension off . This is precisely the basis of decision about the scaleσ: if it turns out that the difference
betweenf andf on Ω is still acceptable (as measured by the reconstruction error), then this means that
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f is extendable at a distanceσ from Ω. Otherwise, it means thatσ needs to be reduced. Indeed, if we
decrease the value ofσ, then the kernel of extension becomes finer, and its eigenvalues will decay more
slowly. This allows the sum in Equation 8 to contain more terms, andf to be a better approximation of
f on Ω. This geometric harmonics technique formalizes these observations into a scheme presented in
Algorithm 2.

Algorithm 2 Multiscale extension scheme of diffusion coordinates via geometric harmonics

1: Let Ω ⊂ Rd be the training set andf = ψi : Ω → R be the diffusion coordinate to be extended
(1 ≤ i ≤ m(t)). Choose a condition numberη > 0 and an admissible errorτ > 0.

2: Choose an initial (large) scale of extensionσ = σ0.
3: Compute the eigenfunctions of the Gaussian kernel with widthσ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω ,

and expandf on this orthonormal basis (on the training setΩ):

f(x) =
∑

l≥0

clϕl(x) wherex ∈ Ω .

4: Compute the error of reconstruction on the training set that one obtains by retaining only the
coefficients such thatη > µ0/µl in the sum above:

Err =


 ∑

l: η≤µ0/µl

|cl|2



1
2

.

If Err > τ then divideσ by 2 and go back to point 3. Otherwise continue.
5: For eachl such thatη > µ0/µl, extendϕl via the Nyström procedure:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd ,

and define the extensionf of f to be

f(x) ,
∑

l≥0

clϕl(x) wherex ∈ Rd .

To summarize our ideas, if we increase the scale of extension, then the error of reconstruction onΩ
will increase. Hence, the reconstruction error limits the maximal extension range. In fact, this limitation
can be regarded as relating the complexity of the function on the training set to the distance to which it
can be extended off this set. Here, the notion of complexity is measured in terms of frequency content
on the training domain. For instance, a constant function has almost no complexity and one should be
able to extend it in the entire space. If the number of oscillations of this function increases, then the
distance to which one can extend it gets smaller. This illustrated on Figure 1. The geometric harmonics
are therefore perfectly appropriate for extending the diffusion coordinates to new samples as higher-order
and lower-order diffusion coordinates do not have the same number of oscillations.

D. Multi-cue alignment and data matching

The purpose of this section is to explain how the diffusion embedding can be efficiently used for data
matching. Suppose that one has two data setsΩ1 = {x1, ..., xn} and Ω2 = {y1, ..., yn′} for which one
would like to find a correspondence, or detect similar patterns and trends, or on the contrary, underline
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Fig. 1. Extension of two functions from the unit circle toR2. The function on the left is very smooth on the training set, and therefore
can be extended far away from it. On the contrary, the function on the right oscillates much on the training set, and this limits its scale of
extension.

their dissimilarity and detect anomalies. This type of task is very common in applications related to
marketing, automatic machine translation, fraud detection or even counter-terrorism. However, working
with the data in its original form can be quite difficult as the two sets typically consist of measurements
of very different nature. For instanceΩ1 could be a collection of measurements related to wether in a
given region, whereasΩ2 could describe agriculture production in the same region. As a consequence,
it is almost always impossible to directly compare the two data sets, simply because they might not be
represented using the same type of features. The main idea that we introduce here is that the diffusion maps
provide a canonical representation of data sets reflecting their intrinsic geometry. This new representation
is based on the graph structure of a set, that is, the neighbor relationship between points, and not on their
original feature representation. As a consequence,instead of comparing the data sets in their original
forms, it can be much more efficient to compare their embeddings. In particular, ifΩ1 andΩ2 are expected
to have similar intrinsic geometry structures, then they should have similar embeddings.

There has been a body of work related to graph based manifold alignment. Gori et. al [24] align weighted
and unweighted graphs by computing a ‘signature’ for each node that is based on repeated use of the
invariant measure of different Markov chains defined on the data. The nodes/samples are then matched
in two ways. First, in a one-by-one basis, where nodes with similar signatures are coupled. Second, in a
globally optimal approach using a bipartite graph matching scheme. Ham et. al [25] align the manifolds,
given a set of a-priori corresponding nodes or landmarks. A constrained formulation of the graph Laplacian
based embeddings is derived by including the given alignment information. First, they add a term fixing the
embedding coordinates of certain samples to predefined values. Both sets are then embedded separately,
where certain samples in each set are mapped to the same embedding coordinates. Second, they describe
a dual embedding scheme, where the constrained embeddings of both sets are computed simultaneously,
and the embeddings of certain points in both datasets are constrained to be identical. The work of Bai et.
al [26] presents a similar framework to our scheme. The ISOMAP algorithm is used to embed the nodes
of the graphs corresponding to the aligned datasets, in a low-dimensional Euclidean space. The nodes are
thus transformed into points in a metric space, and the graph-matching is recast as the alignment of point
sets. A variant of the Scott and Longuet-Higgins algorithm is then used to find point correspondences.
An approach to Many-to-Many alignment was presented in [27] by Keselman et. al. They aim to match
corresponding clusters of nodes in both datasets, rather then match individual nodes. The datasets are
embedded in a metric space using the Matousek embedding and sets of nodes are then aligned using the

22



Earth Mover’s Distance, which is a distribution-based similarity measure for sets.
In the data alignment segment of our work, we resolve the alignment of datasets with a common low-

dimensional manifold, but different densities, by incorporating the use of the density-invariant embedding.
This issue was overlooked in previous works based on spectral embeddings [24], [25], [26], [27], although
spectral and ISOMAPS embeddings are highly sensitive to the way the data points were originally sampled.
Hence, the underlying assumption in [24], [25], [26], [27] that the low-dimensional embedding of datasets
sharing a common low-dimensional manifold will be similar, might prove invalid.

In addition to dealing with the density issue, we present a semi-supervised algorithm for finding a
one-to-one correspondence between two data sets. The scheme we introduce consists in aligning two
graphs in a nonlinear fashion, based on a finite number of landmarks (matching points or nodes). The
main idea is to lift each graph into the same diffusion space, and to align the resulting clouds of points
using a simple affine matching4. The diffusion maps provide a nonlinear reduction of dimensionality, and
therefore our scheme is appropriate for the alignment of high-dimensional data sets with low-intrinsic
dimensionality. In addition, as explained in the previous sections, if we use the density-invariant diffusion
maps, the alignment scheme will be insensitive to the different distributions of points of the two data sets.

As for the notations, suppose that we havek < n, n′ landmarks in each set, that is a sequence ofk pairs
(xσ(1), yτ(1)), ..., (xσ(k), yτ(k)) for which there is a known correspondence. This set of examples is the only
prior information that we use in the algorithm. We assume thatxσ(1) 6= xσ(2) 6= ... 6= xσ(k). The scheme
given in Algorithm 3 computes a surjective functiong : Ω1 → Ω2 such thatg(xσ(1)) = yτ(1), ..., g(xσ(k)) =
yτ(k).

Algorithm 3 Nonlinear graph alignment
1: Start withk landmarks(xσ(1), yτ(1)), ..., (xσ(k), yτ(k)).
2: Compute the diffusion embeddings{x̃1, ..., x̃n} and {ỹ1, ..., ỹn′} of Ω1 and Ω2 where, for each set,

the time parameter was chosen so thatk− 1 eigenvectors are retained. In other words,x̃i and ỹj both
live in Rk−1.

3: Compute the affine functionf : Rk−1 → Rk−1 that satisfies the landmark constraints:

f(x̃σ(1)) = ỹτ(1), ..., f(x̃σ(k)) = ỹτ(k) .

4: Define the correspondence betweenΩ1 andΩ2 by

g(xi) = arg min
y∈Ω2

{‖f(xi)− y‖} ,

wherexi ∈ Ω1,

The idea behind the scheme presented is to embed both data sets into the (same) diffusion space, and
to use an affine alignment functionf in the diffusion space. We assume that the choice of the kernels for
computing the embeddings was already made by the user, and that they were selected in order to obtain
meaningful graphs with respect to the application that the user has in mind. The number of eigenvectors
used for the embedding is directly related to the number of landmarks, which in turns, represents the
quantity of prior information for aligning. The larger the number of known constraints on the alignment,
the larger the dimensionality of the aligning mapping. This is consistent with the fact that higher order
eigenvectors capture finer structures. These observations pave the way for a general sampling theory for
data sets. Indeed, the landmarks can be regarded as forming a subsampling of the original data sets. This
subset determines the largest (or Nyquist) frequency used to represent the original set. This frequency is
measured as the number of eigenvectors employed.

4We note that the alignment procedure can be automated for low-dimensional embeddings (up toR3) by utilizing point matching schemes
such as ICP [28] and Geometrical Hashing [29].
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Note also that the affine function that we use for aligning induces a nonlinear mapping defined on
lower dimensional embedding of the sets, and is even more nonlinear in the original space. It is possible
to introduce more robustness to our scheme by embedding in a lower dimension than the number of
landmarks, and to look for the best affine function that aligns the landmarks, where “best” is measured
in a least-square sense.

III. EXPERIMENTAL RESULTS

A. Application to lip-reading

The validity of our approach is now demonstrated by applying it to lip-reading and sequence alignment,
which are typical high-dimensional data analysis problems. From the statistical learning point of view, this
example allows us to apply the ideas presented in the previous sections to three fundamental and related
problems in the learning of high-dimensional data in general, and visual data in particular. First. we apply
the diffusion framework to perform an efficient nonlinear dimensionality reduction. Second, we extend it
to derive an intensity invariant embedding, essential for incorporating several data sources. Finally, we
deal with the extension of a given embedding, computed on a given data set, to a new sample. This is
the essence of a ‘learning’ schemes that associates knowledge obtained on a training set to a new set of
samples.

Lip-reading has recently gained significant attention [30], [31], [32], [33], [34] and we now provide
background and previous results in that field. The ultimate goal of lip-reading is to design human-like
man-machine interfaces allowing automatic comprehension of speech, which in the absence of sound is
denoted as lip-reading and the synthesis of realistic lip movement. The design of such a system involves
three main challenges: first, the feature extraction, which aims at converting the images of the lips into a
useful description, must be achieved with minimal preprocessing. Then, in order to be efficiently processed,
the data must be transformed via a dimension reduction technique. Last, in order to assimilate new data
for recognition, one must be able to perform data fusion.

Previous lip-reading schemes have mainly focused on the first two points. Concerning the feature
extraction, some works [30], [34] analyze directly the intensity values of the input images, while others
[35], [31] start by detecting curves and points of interest around the mouth whose locations are then used
as features. The combination of audio-visual cues was used in [36] where the visual cues are the extracted
lip contours which are tracked over time. We note that combining audio-visual is beyond the scope of
this work and will be dealt by us in the future. Identifying, tracking and segmenting the lips is a difficult
task and possible solutions include: active contours [37], probabilistic models [38] and the combination of
multiple visual cues (shape, color and motion) [39] to name a few. In practice, one strives to use a simple
preprocessing scheme as possible and in our scheme we employ a simple stabilization scheme discussed
below.

Regarding the dimensionality reduction, several schemes have been used. Preliminary work employed
linear algorithms such as the PCA and SVD subspace projections [35], [34]. For instance, Liet al [34]
use a linear PCA scheme similar to the eigenfaces approach to face detection. Recognition is performed
by correlating an input sequence with the eigenfeatures obtained from PCA. More recent schemes [30]
utilize non-linear approaches such as the MDS [40]. Some of the techniques provide a general embedding
framework for lipreading analysis [30], while others [34], [31] concentrate on a particular task such as
phoneme or word identification. The work in [41] is of particular interest, since it is one of the first
to explicitly formulate the lipreading problem as a “Manifold Learning” issue and tries to derive the
inherent constraints embedded in the space of lip configurations. A Hidden Markov Model (HMM) is
used to model a small number of words (names of four drinks) which define the Markov states and the
manifold. The HMM is then used to recognize the drinks’ names where the input is given by tracking
the outer lips contour using Active Contours. Utilizing both audio and visual information significantly
decreased the error rate, especially in noisy environments. Kimmel and Aharon [30] applied the MDS
scheme to visual lips representation, analysis and synthesis. A set of lips images is aligned and embedded

24



in a two dimensional domain which is then sampled uniformly in the embedding domain to achieve
uniform density. The pronunciation of each word is defined as a path over the embedding domain and
used for visual speech recognition, by path matching. Lips motion synthesis is derived by computing
the geodesic path over the embedding domain, where the start and end point are given as input. Anchor
points in the low-dimensional embedding domain were then used to match the lips configurations of two
different speakers.

Analysis of lip data constitutes an application where it is important to separate the set of nonlinear
constraints on the data from the distribution of the points. As an illustration of the Laplace-Beltrami
normalization as well as the out-of-sample extension scheme, we now describe an elementary experiment
that paves the way to building automatic lip-reading machines, and more generally, machine learning
systems.

We first recorded a movie of the lips of a subject reading a text in English. The subject was then
asked to repeat each digit “zero”, “one”, ... , “nine” 40 times. A minimal preprocessing was applied to
the recorded sequence. More precisely, it was first converted from colors to gray level (values between 0
and 1). Moreover, using a marker put at the tip of the nose of the speaker during the recording, we were
able to automatically crop each frame into a rectangular area around the lips. Each of these new frames
was then regarded as a point inR140×110, where140× 110 is the size of the cropped area.

The first data set, consisting of approximately 5000 frames, corresponds to the speaker reading the
text. This set was used to learn the structures of the lip motion. More precisely, we formed a graph
with Gaussian weightsexp(−‖xi − xj‖2/ε) on the edges between all pairs of points, where the distance
‖xi−xj‖ was merely calculated as the EuclideanL2 distance between framesi andj. The scaleε > 0 was
chosen by looking at the distribution of the distances from each point to the other points. We selected

√
ε

such that each data point would be numerically connected with at least one other point in the graph. This
value, which was found to be equal to 1000, turned out to make the graph of the data totally connected.
The choice of this number was also coherent with the shape of the distribution of the distances (see Figure
2) in that, on average, each point is connected to a small fraction of the other points.
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Fig. 2. The distribution of distances between all pairs of data points. The choice of the scale
√

ε = 1000 corresponds to having each data
point connected to at least one other data point. The resulting graph happened to be totally connected. This histogram shows that the choice
of this scale parameter leads to a sparse graph: each node is connected, on average, to a small number of other nodes.

We then renormalized the Gaussian weights using the Laplace-Beltrami normalization described in
Section II-B. By doing so, our analysis focused on viewing the mouth as a constrained mechanical
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system. In order to obtain a low-dimensional parametrization of these nonlinear constraints, we computed
the diffusion coordinates on this new graph. The spectrum of the diffusion matrix is plotted on Figure 3
and the embedding in the first 3 eigenfunctions is shown on Figure 4.
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Fig. 3. The top 100 eigenvalues of the diffusion matrix for the lips data. The spectrum decays rapidly.
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Fig. 4. The embedding of the lip data into the top 3 diffusion coordinates. These coordinates essentially capture two parameters: one
controlling the opening of the mouth and the other measuring the portion of teeth that are visible.

The task we wanted to perform was isolated-word recognition on a small vocabulary. The example
that we considered was that of identification of digits. Each word “zero”, “one”,..., “nine” is typically
a sequence 25 to 40 frames that we need to project in the diffusion space5. In order to do so, we used
the geometric harmonic extension scheme presented in Section II-C to extend each diffusion coordinate
to the frames corresponding to the subject pronouncing the different digits. After this projection, each
word can be viewed as a trajectory in the diffusion space. The word recognition problem now amounts
to identifying trajectories in the diffusion space.

5Note that this second data set wasnot used to compute the diffusion maps.
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We can now build a classifier based on comparing a new trajectory to a collection of labeled trajectories
in a training set. We randomly selected 20 instances of each digit to form a training set, the remaining
20 being used as a testing set. In order to compare trajectories in the diffusion space, a metric is needed,
and we chose to use the Hausdorff distance between two setsΓ1 andΓ2, defined as

dH(Γ1, Γ2) = max

{
max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

.

Although this distance does not use the temporal information, it has the advantage of not being sensitive to
the choice of a parametrization or to the sampling density for either setΓ1 andΓ2. For a given trajectory
Γ from the testing set, our classifier is a nearest-neighbor classifier for this metric,i.e., the class ofΓ is
decided to be that of the nearest trajectory (fordH) in the training set. The performance of this classifier
averaged over 100 random trials is shown in Table I. In this case, the data set was embedded in 15
dimensions.

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
zero 0.93 0 0 0.01 0 0 0.06 0 0 0
one 0 1 0 0 0 0 0 0 0 0
two 0.05 0 0.88 0.05 0.01 0 0.01 0 0 0

three 0.01 0 0.02 0.93 0 0 0.01 0.01 0.01 0.01
four 0 0 0.01 0.01 0.97 0 0 0.01 0 0
five 0 0 0 0.01 0 0.84 0.01 0.14 0 0.01
six 0.04 0 0 0.01 0 0 0.92 0.02 0 0.01

seven 0.02 0 0 0.04 0 0.07 0.10 0.69 0.05 0.03
eight 0 0.01 0 0 0 0.03 0.01 0.04 0.77 0.14
nine 0 0 0 0.02 0 0 0 0.02 0.12 0.85

TABLE I

CLASSIFIER PERFORMANCE OVER100 RANDOM TRIALS. EACH ROW CORRESPONDS THE CLASSIFICATION DISTRIBUTION OF A GIVEN

DIGIT OVER THEN 10 CLASSES. THE DATA SET WAS EMBEDDED IN15 DIMENSIONS.

The classification error ranges from 0% to 31% with an average of 12.2%. The best classification rate is
achieved for the word “one” which, in terms of visual information, stands far away from the other digits.
In particular, typical sequences of “one” involve frames with a round open mouth, with no teeth visible
(see first row of Figure 5). These frames essentially never appear for other digits. The worst classification
job is for the word “seven” which seems to be highly confused with the words “five” and “six”. As shown
on Figure 5, typical instances of these words appear to be similar in that the central frames involve an
open mouth with visible teeth. In the case of the “six” and “seven”, teeth from the lower jaws are visible
because of the “s” sound. Regarding the similarity between “five” and “seven”, the ”f” and ”v” sounds
translate into the lower lip touching the teeth of the upper jaw.

The accuracy that we obtain is comparable to former schemes [30], [41], while using significantly
less preprocessing. For instance, in [30], the lips images are hand picked and stabilized using an affine
motion model, while in [41] the contours of the lips are tracked by Active Contours. Our lips images are
acquired by taping a continuous 5 minutes sequence and a simple cropping is performed to compensate
for translations. We note that the above comparison is qualitative rather than quantitative, as the different
schemes were applied to different datasets that are not publicly available.

B. Synchronization of head movement data

We now illustrate the concept of graph alignment as well as the algorithm presented in Section II-D.
We recorded 3 movies of subjects wearing successively a yellow, red and black mask. Each subject was
asked to move their head in front of the camcorder. We then considered the three sets consisting of all
frames of each movie. Let YELLOW, RED and BLACK denote these sets. Our goal was to synchronize
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"FIVE"

"ONE"

"SEVEN"

"SIX"

Fig. 5. Typical frames for the words “one”, “five”, “six”, “seven”.

the movements of the different masks by aligning the 3 diffusion embeddings. The objective of this
experiment was twofold

• We first wanted to illustrate the importance of having a coordinate system capturing the intrinsic
geometry of data sets. The intrinsic geometry is the basis of our alignment scheme: the key point
is that, as we will show, all three sets exhibit approximately the same intrinsic geometry, and that
the diffusion coordinates parameterize this geometry. It is to be noted that working directly in image
space would be highly inefficient since any picture of the red or black mask is at a large distance from
the set of pictures of the yellow mask (this is a straight consequence of the high dimensionality of the
data). On the contrary, the diffusion coordinates will capture the intrinsic organization of each data
sets, and therefore will provide a canonical representation of the sets that can be used for matching
the data. Note also that our approach does not require any prior information on the type of data we
are dealing with.

• The other point that we wished to illustrate is the importance of using the density-invariant diffusion
maps. As we will show, although the three sets have approximately the same intrinsic geometry (the
data points lie on the same 2D submanifold), the distribution of the points on this manifold are quite
different. Therefore, it is necessary to employ the density re-normalization technique described in
Section II-B.

These two points constitute the main ingredients for a successful alignment of the sets.
We now describe the experiment in more details. Each set of frames was regarded as a collection of

points inR10000, where the dimensionality coincides with the number of pixels per image. Following the
lines of our algorithm, we formed a graph from each set with Gaussian weightsexp(−‖xi − xj‖2/ε).
The quantity‖xi − xj‖ represents theL2 norm between imagesi and j, and here again, the scale was
chosen so that each data point would be numerically connected to at least one other data point. We expect
each set to lie approximately on a manifold of dimension 2, as each subject essentially moved their head
along two anglesα andβ shown on Figure 6 and as the light conditions were kept the same during the
recording. Therefore, each data sets is the expression of a highly constrained mechanical system, namely
the articulation between the neck and the head.

It is clear that the density of points on this manifold is essentially arbitrary and varies with each subject
and recording. Indeed, the density is essentially a function of the type of movement of each subject, their
speed of execution, and also the type of mask that they were wearing. Since we were only interested
in the space of constraints, that is the geometry of the manifold, we renormalized the Gaussian weights
according to the algorithm described in Section II-B, and constructed a Markov chain that approximates
the Laplace-Beltrami diffusion. Figure 7 shows the embedding in the first three eigenfunctions for each
data set. They are extremely similar. We then defined 8 matching triplets of landmarks in each set. The
landmarks were chosen to correspond to the main head positions. We computed the diffusion embedding
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Fig. 6. Each subject essentially moved their head along the two anglesα andβ. There was almost no tilting of the head. Hence, the data
points approximately lie on a submanifold of dimension 2.
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Fig. 7. The embedding of each set in the first 3 diffusion coordinates. The color encodes the density of points. All three sets share this
butterfly-shaped embedding

in 7 dimensions and we then calculated two affine functionsgY R : R7 → R7 and gY B : R7 → R7 that
match the landmarks from YELLOW to BLACK, and from YELLOW to RED.

Two conclusions can be drawn from this experiment. First, the diffusion embedding revealed that the
data sets were approximately 2-dimensional, as expected (see Figure 7 for the embeddings in the first 3
diffusion coordinates). The diffusion coordinates captured the main parameters of variability, namely the
anglesα and β. From the embedding plots, it can be seen that all three embedded sets have strikingly
similar shapes.This supports our intuition that all sets should have similar intrinsic geometries. From
this observation, we were able to successfully compute two aligning functionsgY B andgY R, and we used
them to drive the movements of the black and red masks from those of the yellow mask. The result of
the matching of the three data sets is shown on Figure 8. A live demo of this experiment can be found
at [42].

The other conclusion concerns the importance of having used the density normalized diffusion coor-
dinates. A key point in our analysis is that to compare the intrinsic geometries of each set, we need
to be able to get rid of the influence of the points on the 2D submanifold. In order to underline the
importance of this idea, we also computed the embedding of the three Yellow and BLACK without this
renormalization. According to the discussion of Section II-B, the embedded sets should now reflect both
the constraints (the intrinsic geometry) and the distribution of the points (the density on the submanifold).
The result is shown on Figure 9, and although the embedding of the BLACK set still retain this butterfly
shape that we previously obtained when renormalizing, the YELLOW set is now embedded as some
portion of an ovoid. Although this statement can seem very qualitative, it is now clear that the alignment
of these sets should fail. This experiment therefore underlines the importance of being able to compute
density-invariant embeddings of the data.
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Fig. 8. The embedding of the YELLOW set in three diffusion coordinates and the various corresponding images after alignment of the
RED and BLACK graphs to YELLOW.
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Fig. 9. The embeddings of the YELLOW (a) and BLACK (b) sets in three diffusion coordinates without the density renormalization. These
embedded sets now have very different shapes, and their alignment is impossible.

IV. CONCLUSION AND FUTURE WORK

In this work we introduced diffusion techniques as a framework for data fusion and multi-cue data
matching by addressing several key issues. First, we underlined the importance of the Laplace-Beltrami
normalization for data fusion by showing that it allows to merge data sets produced by the same source
but with different densities. In particular, the Laplace-Beltrami embedding provides a canonical, density-
invariant embedding which is essential for data matching. Second, we suggested a new data fusion scheme,
by extending spectral embeddings using the geometric harmonics framework. Finally, we presented a novel
spectral graph alignment approach to data fusion.

Our scheme was successfully applied to lip-reading where we achieved high accuracy with minimal
preprocessing. We also demonstrated the alignment of high-dimensional visual data (“rotating heads”
sequence).

In the work presented, we have focused on the situation when all sources are highly correlated. In
the future we plan on extending our approach to multi-cue data analysis by integrating different signals
from weakly correlated sources into a unified representation. This should open the door to applications
related to multi-sensor integration. Finally, we also are studying a spectral based approach to the analysis
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of signals as dynamical random processes. Our current work did not utilize the temporal information of
the video sequences. By constructing a dynamical Markov process model, we intend to improve the lips
reading accuracy.
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APPENDIX I
EXISTENCE AND UNIQUENESS OF THE STATIONARY DISTRIBUTION

The goal of this section is to show that if the graph is connected, then the stationary distributionφ0 is
guaranteed to exist. The first step is to notice that the data set is finite, and therefore so is the state space
of our Markov chain. Thus by a classical version of the Perron-Frobenius theorem, it suffices to prove
that the chain is irreducible and aperiodic.

• The irreducibility is a mere consequence of the fact that the graph is connected. Indeed, letxi and
xj be two data points, and letτ be the length of a path connectingxi and xj. Since the graph is
connected, we know thatτ < +∞. We conclude thatpτ (xi, xj) > 0, which implies that the chain
irreducible.

• Concerning the aperiodicity, remember thatw(·, ·) represent the similarity between data points, so
we can assume that for all data pointxi, we havew(xi, xi) > 0. Consequently,p1(xi, xi) > 0, which
implies that the chain is aperiodic.

Finally, we can conclude that our Markov chain has a unique stationary distributionφ0.

APPENDIX II
DIFFUSION DISTANCE AND EIGENFUNCTIONS

The random walk constructed from a graph via the normalized graph Laplacian procedure yields a
Markov matrix P with entriesp1(x, y). As it is well known [15], this matrix is in fact conjugate to a
symmetric matrixA with entriesa(x, y), given by

a(x, y) =

√
d(x)

d(y)
p1(x, y) =

w(x, y)√
d(x)d(y)

.

ThereforeA hasn eigenvaluesλ0, ..., λn−1 and orthonormal eigenvectorsv0, ..., vn−1. In particular,

a(x, y) =
n−1∑

l=0

λlvl(x)vl(y) . (9)

This implies thatP has the samen eigenvalues. In addition, it hasn left eigenvectorsφ0, ..., φn−1 andn
right eigenvectorsψ0, ..., ψn−1. Also, it can be checked that

φl(y) = vl(y)v0(y) andψl(x) = vl(x)/v0(x) . (10)

Furthermore, it can be verified thatv0(x) =
√

d(x)/
√∑

z d(z), and thereforeφ0(y) = d(y)/
∑

z d(z) and
ψ0(x) = 1. In addition,

φ0(x)ψl(x) = φl(x) . (11)

It results from Equations 9 and 10 thatP t admits the following spectral decomposition:

pt(x, y) =
n−1∑

l=0

λt
lψl(x)φl(y) , (12)
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together with the biorthogonality relation
∑
y∈Ω

φi(y)ψj(y) = δij , (13)

whereδij is Kronecker symbol. Combining this last identity with Equation 11, one obtains

∑
y∈Ω

φi(y)φj(y)

φ0(y)
= δij .

This means that the system{φl} is orthonormal inL2(Ω, 1/φ0). Therefore, if one fixesx, Equation 12
can interpreted as the decomposition of the functionpt(x, ·) over this system, where the coefficients of
decomposition are{λt

lψl(x)}.
Now by definition,

Dt(x, z)2 =
∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
= ‖pt(x, ·)− pt(z, ·)‖2

L2(Ω,1/φ0) .

Therefore,

Dt(x, y)2 =
n−1∑

l=0

λ2t
l (ψl(x)− ψl(z))2 .
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Abstract

We introduce Greedy Basis Pursuit (GBP), a new algorithm for computing sparse signal

representations using overcomplete dictionaries. GBP is rooted in computational geometry and

exploits an equivalence between minimizing the ℓ1-norm of the representation coefficients and

determining the intersection of the signal with the convex hull of the dictionary. GBP unifies

the different advantages of previous algorithms: like standard approaches to Basis Pursuit,

GBP computes representations that have minimum ℓ1-norm; like greedy algorithms such as

Matching Pursuit, GBP builds up representations, sequentially selecting atoms. We describe

the algorithm, demonstrate its performance, and provide code. Experiments show that GBP

can provide a fast alternative to standard linear programming approaches to Basis Pursuit.

1 Introduction

The problem of computing sparse signal representations using an overcomplete dictionary arises in

a wide range of signal processing applications [87, 34, 55], including image [10, 105], audio [68, 43],

and video [6] compression and source localization [71]. The goal is to represent a given signal as

a linear superposition of a small number of stored signals, called atoms, drawn from a larger set,

called the dictionary. In traditional signal representation methods, such as the DCT or various

wavelet transforms, the dictionary is simply a basis: the number of atoms in the dictionary is equal

to the dimensionality of the signal space and representation is unique. By contrast, in an overcom-

plete dictionary the number of atoms is greater than the dimensionality of the signal space and

1
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representation is no longer unique; this enables flexibility in representation [72], ‘shiftability’ [93],

and the use of multiple bases [62, 97], but it requires a criterion to select from among the (many)

possibile representations. A natural one is sparsity, by which the representation selected is the one

that uses as few atoms as possible.

Computing sparse representations is NP-hard [78, 31], and so several (heuristic) methods have

been developed [72, 83, 19, 56]. These methods optimize various measures of sparsity, typically

functions of the representation coefficients [66, 65], using, for example, greedy algorithms [72],

gradient descent [69], linear programming [21], and global optimization [86]. Currently, the two

most popular approaches are Matching Pursuit [72] and Basis Pursuit [20, 21].

Matching Pursuit (MP) is a greedy algorithm: a signal representation is iteratively built up

by selecting the atom that maximally improves the representation at each iteration. While there

is no guarantee that MP computes sparse representations, MP is easily implemented, converges

quickly, and has good approximation properties [72, 100, 58]. Moreover, MP and one of its variants,

Orthogonal Matching Pursuit (OMP) [83], can be shown to compute sparse (or nearly sparse)

representations under some conditions [102, 58].

Basis Pursuit (BP), instead of seeking sparse representations directly, seeks representations

that minimize the ℓ1-norm of the coefficients. By equating signal representation with ℓ1-norm

minimization, BP reduces signal representation to linear programming [20, 21], which can be solved

by standard methods [104]. Furthermore, BP methods can compute sparse solutions in situations

where greedy algorithms fail [21]. Recent theoretical work shows that representations computed by

BP are guaranteed to be sparse under certain conditions [37, 36, 51, 103].

While applying standard linear programming methods to compute minimum ℓ1-norm signal

representations is natural, such methods were developed with very different problems in mind and

may not be ideally suited to the representation problem. For example, if the matrix corresponding

to the dictionary is not sparse then the (normally fast) interior point methods advocated for BP [21]

can be slow. Furthermore, the design required to produce examples on which greedy algorithms fail

yet BP succeeds suggests that a greedy strategy could be successfully applied to minimum ℓ1-norm

2
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representation.

In this article we develop a new algorithm for computing sparse signal representations, which

we call Greedy Basis Pursuit (GBP). GBP is an algorithm for BP: it minimizes the ℓ1-norm of the

representation coefficients. However, unlike standard linear programming methods for BP, GBP

proceeds much like MP, building up the representation by iteratively selecting atoms.

While algorithmically similar to MP, GBP differs from MP in two key ways: (1) GBP uses

a novel criterion for selecting the next atom in the representation. The criterion is based on

computational geometry, and effects a search for the intersection between the signal vector and

the convex hull of the dictionary. (2) GBP may discard atoms that it has already selected; this

is crucial, as it allows GBP to overcome the ‘mistakes’ that MP can make in atom selection when

compared to BP [21].

While GBP returns the signal representation with the minimum ℓ1-norm, and thus GBP enjoys

the theoretical benefits of BP, the greedy strategy of GBP leads to computational gains when

compared to standard linear programming methods. Experiments show our implementation of

GBP to be faster than off-the-shelf linear programming packages on some signal representation

problems, particularly high-dimensional problems with very overcomplete dictionaries.

The remainder of this paper is organized as follows. In Section 1.1 we formally state the sparse

signal representation problem. In Section 2 we review current approaches to the problem. Section 3

provides the geometric interpretation of Basis Pursuit that underlies GBP. In Section 4 we describe

the Greedy Basis Pursuit algorithm. Section 5 present the results of experiments with GBP. We

discuss GBP in Section 6 and conclude in Section 7.

1.1 Problem Statement

Given a signal x and a dictionary D we seek a sparse representation of x. We assume that x consists

of d real valued measurements, that is, x ∈ R
d, for example, a sound wave sampled at d points. We

assume that D consists of n atoms and is overcomplete, that is, D = {ψi}ni=1 and n > d, and that

the atoms are also d-dimensional and have unit norm, that is, ∀ψi ∈ D, ψi ∈ R
d and ‖ψi‖2 = 1. A

3
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representation of x is a set of indices I into D, where I ⊆ {1, . . . , n}, and a corresponding set of

coefficients A = {αi}i∈I such that

x =
∑

i∈I

αiψi (1)

A representation is sparse if the number of atoms used, |I| (here | · | denotes cardinality), is

minimized over all possible representations.

Equivalently, in matrix notation, given a (column) vector x ∈ R
d corresponding to the signal,

and a d× n matrix D corresponding to the dictionary, where the ith column of D is the atom ψi,

the sparse signal representation problem is then to compute a (column) vector α ∈ R
n solving

Minimize ‖α‖0 subject to Dα = x (2)

where ‖α‖0 is the ℓ0-norm of α, defined to be the number of nonzero entries of α. In general, the

equality constraint can be relaxed to give a corresponding approximation problem; see [78, 100,

102, 103].

BP replaces the ℓ0-norm with the ℓ1-norm, seeking representations that minimize
∑

i∈I |αi|. In

matrix form this corresponds to

Minimize ‖α‖1 subject to Dα = x (3)

GBP solves 3. The approximation problem corresponding to BP is called Basis Pursuit Denoising;

see [21, 69, 42].

2 Related work

The design of GBP draws on previous work in sparse signal representation, particularly the contrast

between MP and BP, and on ideas from subset selection, which we summarize here. We also high-

light some unexplored connections between sparse signal representation and linear programming.

2.1 Matching Pursuit

Matching Pursuit (MP) [72] is the prototypical greedy algorithm [23] applied to sparse signal repre-

sentation. MP is currently the most popular algorithm for computing sparse signal representations

4
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using an overcomplete dictionary, and is used in a variety of applications [10, 84, 6]. MP has

also spawned several variants [46, 63, 47], including Orthogonal Matching Pursuit (OMP) [83, 32],

which itself has several variants [54, 24, 88].

MP computes a signal representation by greedily constructing a sequence of approximations

to the signal, x̃(0), x̃(1), x̃(2), . . ., where each consecutive approximation is closer to the signal.

MP begins with an ‘empty’ representation, x̃(0) = 0, and at each iteration augments the cur-

rent representation by selecting the atom from the dictionary which is closest to the residual,

x̃(t+1) = x̃(t) + α(t)ψ(t), where ψ(t) = arg maxψ∈D〈ψ,x − x̃〉.

MP is easy to implement, has a guaranteed exponential rate of convergence [72, 100, 58], and

recovers relatively sparse solutions [102], particularly compared to earlier approaches such as the

Method-of-Frames [29, 21].

A drawback of MP applied to sparse representation is its greediness. It is possible to construct

signal representation problems where, because of its greediness, MP (or OMP) intially selects an

atom that is not part of the optimal sparse representation; as a result, many of the subsequent

atoms selected by MP simply compensate for the poor initial selection [33, 21]. This shortcoming

motivated the development of BP, which succeeds on these problems[21]; recent theoretical work

explains this phenomenon [37, 36, 51].

These problems are also motivation for the development of GBP. Here MP fails because of its

poor intial selection of atoms; however, the atoms intially selected by MP are not necessarily bad

in general, after all, these problems are specially designed for MP to fail on. For MP to succeed on

these problems, it would need to either make ‘better’ atom selections or be able to discard ‘bad’

atoms to recover from poor selections (or both). GBP adapts the greedy strategy to incorporate

both of these ideas and compute the same representations as BP.

2.2 Basis Pursuit

Basis Pursuit (BP) [19, 20, 21] approaches sparse signal representation by changing the problem to

one of minimizing the ℓ1-norm of the representation coefficients. This can be interpreted as assuming

5
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a ‘sparse prior’ on the representation coefficients [80]. The ℓ1-norm in particular implies that the

resulting representations are sparse in the ℓ0-norm sense under certain conditions [37, 36, 51] and

algorithmically equates sparse signal representation with linear programming.

A linear program is defined as follows: Given a matrix A ∈ R
m×n, a (column) vector b ∈ R

m,

and a (column) vector c ∈ R
n, compute a (column) vector x ∈ R

n satisfying

Minimize cTx subject to Ax = b, xi ≥ 0 (4)

The signal representation problem is posed in BP as a linear program with the following as-

signments (the variables on the right hand side are as defined in Section 1.1 and the variables on

the left hand side plug into the linear program above):

A ← [ψ1 ψ2 · · · ψn −ψ1 −ψ2 · · · −ψn ]

b ← x

c ← [ 1 1 · · · 1 ]

x ← [α1 α2 · · · αn ]

Minimizing cTx is equivalent to minimizing the ℓ1-norm of the coefficients. Note that A, corre-

sponding to the dictionary, is doubled to include the negative of each atom; this is due to the linear

programming constraint that the coefficients be nonnegative 4.

Chen et al. [20, 21] describe two algorithms for BP, BP-Simplex and BP-Interior, which are

the well-known simplex and interior point methods of linear programming [104] applied to signal

representation. The choice of which BP algorithm to use depends on the structure of the dictionary:

for dictionaries that have fast transforms, BP-Interior exploits these transforms in the solution of the

corresponding linear program. However, the running time of linear programming is still typically

an order of magnitude slower than that of MP on realistic problems [21].

While standard linear programming methods have been highly tuned over time, they are not

necessarily ideally suited to the specific problem of computing signal representations. For example,

many linear programming methods assume that the matrix A is sparse, as is the case for con-

straints that arise in typical operations research problems, while this may not be the case in signal
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representation problems. This raises the possibility that alternative approaches could prove more

efficient for the particular problem of signal representation. Some inspiration for an alternative

approach is provided by Chen et al. [21], who contrast MP and BP-Simplex, characterizing MP

as a ‘build-up’ approach and BP-Simplex as a ‘swap-down’ approach. If A is not sparse, then

the swaps (or pivots) executed by BP-Simplex can be costly, in the computation of an individual

swap, in the number of swaps, and in the computation of an initial basis. GBP instead takes the

‘build-up’ approach to solving linear programming.

2.3 Subset selection

Sparse signal representation is closely related to the problem of subset selection for regression,

i.e., determining the optimal subset of variables on which to regress a data set [74]. In sparse

signal representation, the signal corresponds to the data set, while the atoms correspond to the

variables. In fact, MP was inspired by Projection Pursuit [50, 61], in particular its use as a regression

algorithm [49]. Given this connection, it should not be surprising that some algorithmic ideas in

sparse signal representation correspond to earlier work in regression. For example, in Forward

Selection the optimal subset is constructed by starting with the empty subset and iteratively adding

variables to it, selecting at each iteration the variable that accounts for most of the residual variance;

this is essentially what OMP does. Backward Elimination, which starts with the full set of variables

and iteratively pares it down, has similarly been adapted for signal representation [59, 25].

One standard algorithm for subset selection in regression which appears to have no analogue in

sparse signal representation is Efroymson’s algorithm [41], also called step-wise regression, proceeds

like Forward Selection, but, like Backward Elimination, drops variables from the subset as they

become irrelevant. GBP follows a similar strategy, iteratively selecting atoms and occasionally

discarding them.

2.4 Linear programming

While Basis Pursuit represents the first formal casting of signal representation as linear program-

ming, linear programming has long been used in sparse signal representation, particularly for de-
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convolution in various applications [40, 8, 79]. It is therefore not surprising that developments in

sparse signal representation closely parallel earlier developments in linear programming.

Examining the literature in linear programming reveals that MP and OMP have linear pro-

gramming analogues: MP is technically equivalent to one of the earliest (1948) methods developed

for linear programming, called von Neumann’s algorithm [26]. Similarly, OMP is equivalent to a

phase I algorithm [67] for the simplex method.

GBP builds up a solution to a linear programming problem; several linear programming methods

adopt a similar strategy, solving increasingly complex problems as constraints or variables are

iteratively introduced [98, 92, 81]; see also [60]. We remark that one method, an interior point

method called the gravitational method [77, 18], can be shown to be equivalent to GBP when

applied to the problem dual to (4). Empirically, the gravitational method is faster than standard

methods on some problems [18], which is consistent with our results.

3 The Geometry of Basis Pursuit

GBP is based on computatonal geometry, specifically on the following geometric interpretation of

BP. Given a signal x and a dictionary D, let conv(D) denote the convex hull of D; the vertices of the

facet of conv(D) intersected by the vector x are the atoms in the minimum ℓ1-norm representation

of x.

To see this, treat the signal as a vector and the atoms as points in R
d. First consider the set

of signals that have representations α such that ‖α‖1 = 1. By definition, this is the convex hull of

the dictionary

conv(D) =

{

x

∣

∣

∣

∣

∣

x =
∑

i∈I

αiψi and
∑

i∈I

αi = 1, αi > 0

}

Note that because ‖ψi‖2 = 1, conv(D) is a polytope inscribed in the unit sphere. Let xD be the

point of intersection between the vector x and the boundary of conv(D). xD lies on the boundary

of conv(D) and can be represented as a linear combination of the vertices of the facet of conv(D)

containing xD; call this facet Fx. This representation is the minimum ℓ1-norm representation: its

ℓ1-norm is 1, and it is impossible to construct a representation with ℓ1-norm less than 1. The
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ψ1

xD

Fx

O

x

ψ6

ψ2

ψ3

ψ4

ψ5

conv(D)

Figure 1: A geometric interpretation of Basis Pursuit. The signal vector x intersects the facet Fx

of the convex hull of the dictionary, shown in gray. The vertices of Fx, ψ1 and ψ2, are the atoms

in the Basis Pursuit representation of x.

minimum ℓ1-norm representation of x is simply a scaling of the minimum ℓ1-norm representation

of xD, and the atoms in the representation are the same. See Figure 1. (Note that if we know the

atoms in a representation of x it is straightforward to calculate the corresponding coefficients.)

Thus BP is equivalent to finding the facet of conv(D) which intersects x. Computing this

intersection is known to reduce to linear programming [90]; to our knowledge, the converse is

known [15] but never utilized to solve linear programming. We use this equivalence to drive GBP.

A previous geometric interpretation of sparse representation [14] recognizes that in two dimen-

sions BP computes representations with atoms that ‘enclose’ x. The intepretation provided here

can be viewed as the generalization of this notion to higher dimensions.

4 The Greedy Basis Pursuit Algorithm

Given the equivalence between BP and finding the facet of the convex hull of the dictionary that

intersects the signal vector, we propose Greedy Basis Pursuit (GBP). GBP computes the minimum

ℓ1-norm representation by searching for this facet directly.
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The main idea behind GBP is to find the facet of interest by iteratively ‘pushing’ a hyperplane

onto the surface of the convex hull of the dictionary until it coincides with the supporting hyperplane

containing the facet. This approach is inspired by gift-wrapping methods [17, 64, 99] for the convex

hull problem in computational geometry [91]. To adapt gift-wrapping to the problem of finding

a particular facet, we need to specify how the initial hyperplane is chosen and the direction in

which the ‘wrapping’ proceeds at each iteration. Below we describe the GBP algorithm, prove its

convergence, and discuss implementation issues.

4.1 The main algorithm

GBP takes as input a signal x ∈ R
d and an overcomplete dictionary D = {ψi}ni=1, where n>d and

∀i, ψi ∈ R
d and ‖ψi‖2 = 1, and outputs a representation of x as a set of indices I ⊆ {1, . . . , n} and

a corresponding set of coefficients A = {αi}i∈I such that x =
∑

i∈I αiψi. Note we assume that if

ψi ∈ D then −ψi ∈ D; see section 2.2.

GBP greedily searches for the facet of conv(D) that intersects x, call it Fx. GBP proceeds by

iteratively constructing a sequence of hyperplanes, H(0),H(1),H(2), . . ., supporting conv(D). (We

use the superscript (t) to denote iteration t.) At each iteration, GBP maintains a set of indices

I(t) and a set of coefficients A(t), defining an approximation to x: x̃(t) =
∑

i∈I(t) αiψi, and a

normal vector n(t). The current hyperplane H(t) is defined to have normal n(t) and contain the

set {ψi}i∈I(t) . Each consecutive hyperplane H(t+1) is a rotation of the current hyperplane H(t)

determined by x̃(t). GBP stops when H(t) contains Fx (and therefore x̃(t) = x).

4.1.1 Initialization

As we do not a priori know the orientation of Fx, we optimistically choose the initial supporting

hyperplane H(0) to have normal n(0) = x/‖x‖2. In general H(0) will intersect only one vertex

of conv(D), in particular the atom ψi0 , where i0 = arg maxi〈ψi,n(0)〉. To see this, consider a

hyperplane with normal n(0) at some distance greater than 1 away from the origin; if we move this

hyperplane in the negative normal direction (towards the origin), the first point of conv(D) it will

intersect is ψi0 . (Note that this is also the first atom selected by MP and OMP.) Thus I(0) = {i0};
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this gives us αi0 = 〈ψi0 ,x〉, A(0) = {αi0}, and x̃(t) = αi0ψi0 . For convenience, we denote the set of

currently selected atoms by Ψ(t) = {ψi}i∈I(t) .

4.1.2 Iteration

Each consecutive hyperplaneH(t+1) is constructed by rotating H(t) in a 2-dimensional plane around

a pivot point until another vertex of conv(D) is intersected. The plane of rotation and the pivot

point are defined in terms of x̃(t). We define x̃(t) to be the best current approximation to x using

Ψ(t) and positive coefficients, that is, x̃(t) =
∑

i∈I(t) αiψi, where αi > 0 and ‖x̃(t)−x‖2 is minimized.

Note that x̃(t) is the projection of x onto the convex cone spanned by Ψ(t) with the origin at the

apex; we provide details on computing x̃(t) in Section 4.1.3. Let x̃
(t)
H be the intersection of the

vector x̃(t) with H(t). If d
(t)
H is the (orthogonal) distance from the hyperplane to the origin, i.e.,

d
(t)
H = 〈ψi,n〉,∀i ∈ I(t), then

x̃
(t)
H =

(

d
(t)
H /〈x̃(t),n(t)〉

)

x̃ (5)

Let r(t) denote the residual vector, r(t) = x− x̃(t). Define v(t) to be the unit vector in the direction

of r(t) projected onto H(t).

v(t) =
r(t) − 〈r(t),n(t)〉n(t)

‖r(t) − 〈r(t),n(t)〉n(t)‖ (6)

The plane of rotation is the 2-dimensional plane defined by the point x̃
(t)
H and the vectors n(t) and

v(t). The pivot point around which H is rotated is x̃
(t)
H .

To compute the first vertex which the hyperplane intersects under this rotation, we order the

atoms by the angle θ they form with v, where θ is given by

θi = arctan(〈ψi − x̃
(t)
H ,n

(t)〉/〈ψi − x̃
(t)
H ,v

(t)〉)

The atom selected is then ψk where

k = arg min
i
θi (7)

Once selected, the atom ψk is added to the set Ψ(t) and a new approximation to x is computed,

x̃(t+1). In this new approximation, some atoms in Ψ(t) ∪ {ψk} may become extraneous: they are

discarded to form Ψ(t+1); see Section 4.1.3 below.
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ψi
H(0)

~
Hx (0)

(0)−n ~
Hx (1)

(1)−n

ψk

O

x

=
v(0)

H(1)

ψ

ψl

j

Figure 2: A schematic of the first iteration of GBP. The intial hyperplane H(0) has normal n(0) in

the direction of the signal x and contains ψi. The atoms are projected from R
d to the n(0)-v(0)

plane (shown) and sorted by θ. The second atom selected is ψk, corresponding to a rotation of

H(0) around x̃
(0)
H to H(1). Note that v(1) is orthogonal to the n(0)-v(0) plane (and therefore is not

shown).

The new hyperplane H(t+1) can now be computed; it has normal

n(t+1) =
−〈ψk − x̃

(t)
H ,n

(t)〉v(t) + 〈ψk − x̃
(t)
H ,v

(t)〉n(t)

‖ − 〈ψk − x̃
(t)
H ,n

(t)〉v(t) + 〈ψk − x̃
(t)
H ,v

(t)〉n(t)‖
(8)

and contains x̃
(t+1)
H .

The procedure is repeated until x̃(t) = x, that is, H(t) contains Fx.

Figure 4.1.2 provides a visualization of GBP in action in three dimensions.

4.1.3 Computational details

At each iteration we compute x̃(t) as the projection of x onto the convex cone of Ψ(t).

One approach to computing this projection is to maintain an orthogonal basis for the span of

Ψ(t), updating it as atoms are added to Ψ(t), as in OMP [83]; this is impractical in our case as most

iterative orthogonalization procedures are order-dependent and hyperplane rotation may cause us

to discard arbitrary atoms from Ψ(t).

Instead we maintain a biorthogonal system consisting of Ψ(t) and Ψ̃⊥(t), the set of vectors
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Figure 3: GBP in action on a 3-dimensional problem. Each row depicts one iteration, the left

column from a fixed viewpoint, the right column projected to the n(t)-v(t) plane. The signal vector

is green, the unselected atoms blue circles, the selected atoms red discs, the convex cone of Ψ(t) is

gray, the normal is the solid black line, and two vectors in H(t) are the dashed lines.
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Algorithm 1 Greedy Basis Pursuit

Input

• A signal x ∈ R
d

• A dictionary D = {ψi}ni=1,

• A threshold ǫ ≥ 0

Output

A representation of x, consisting of

• A set of indices I ⊆ {1, . . . , n}
• A set of coefficients A = {αi}i∈I

such that x−∑

i∈I αiψi < ǫ
Procedure

1. Initialize

(a) Select the first atom
k ← arg maxi∈{1,...,n}〈x, ψi〉

(b) Compute the initial approximation
αk ← 〈x, ψk〉, I(0) ← {k}, A(0) ← {αk}

(c) Initialize the biorthogonal system
Ψ̃⊥ ← {ψk}

(d) Initialize the hyperplane
x̃(0) ← αkψk, n← x/‖x‖, r← x− x̃

2. Repeat until ‖r‖ < ǫ

(a) Compute the center and plane of rotation
x̃H ← (〈ψi,n〉/〈x̃,n〉) x̃, for any i ∈ I
v← (r− 〈r,n〉n) /‖r− 〈r,n〉n‖

(b) Project atoms into the n-v-plane and select the next atom

k ← arg mini,∈{1,...,n} tan−1 〈ψi−x̃H ,n〉
〈ψi−x̃H ,v〉

(c) Compute the new representation and update the biorthogonal system
{I,A, Ψ̃⊥} ← AddAtom(x,I,A, ψk, Ψ̃⊥)

(d) Discard any extraneous atoms
while ∃αi ≤ 0, i ∈ I do

{I,A, Ψ̃⊥} ← SubtractAtom(x,I,A, ψj , Ψ̃⊥)

(e) Update the hyperplane parameters
x̃←

∑

i∈I αiψi

n← −〈ψk−x̃H ,n〉v+〈ψk−x̃H ,v〉n
‖−〈ψk−x̃H ,n〉v+〈ψk−x̃H ,v〉n‖

r← x− x̃

biorthogonal to Ψ(t). Each element ψ̃
⊥(t)
i of Ψ̃⊥(t) satisfies the following two equations:

〈ψi, ψ̃⊥(t)
i 〉 = 1 (9)

〈ψi, ψ̃⊥(t)
j 〉 = 0, if i 6= j (10)
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The biorthogonal vector ψ̃
⊥(t)
i can be understood as the component of ψ

(t)
i that is orthogonal to all

of the other vectors in Ψ(t), appropriately scaled. That is, if we express an atom ψi ∈ Ψ(t) as

ψi = ψ
‖(t)
i + ψ

⊥(t)
i (11)

where ψ
‖(t)
i is the component of ψi lying in the span of Ψ(t)−{ψi}

ψ
‖(t)
i =

∑

j∈I(t),j 6=i

β
(t)
ij ψj (12)

and ψ
⊥(t)
i is orthogonal to the span of Ψ(t) − {ψi}, then the biorthogonal vector to ψ

(t)
i is given by

ψ̃
⊥(t)
i = ψ

⊥(t)
i /‖ψ⊥(t)

i ‖2 (13)

Given the biorthogonal system, we can compute the current approximation to x as

x̃(t) =
∑

i∈I(t)

α
(t)
i ψi where α

(t)
i = 〈x, ψ̃⊥(t)

i 〉 (14)

The sign of the coefficients indicates whether or not an approximation lies in the convex cone

of the atoms: if αi < 0 for some i then the approximation does not lie in the convex cone; the

corresponding atom ψi is deleted from the representation and the biorthogonal system is updated.

The biorthogonal system and x̃(t) can be updated as atoms are added to and subtracted from

Ψ(t). Such adaptive biorthogonalization methods have recently been applied to MP [88, 7] and are

standard in linear programming ([104], Chapter 8). We present pseudocode for adding an atom in

Algorithm 2. and pseudocode for substracting an atom in Algorithm 3.

4.2 Analysis

By construction, GBP computes the minimum ℓ1-norm representation of a given signal. To prove

this we show that GBP converges to an exact representation in a finite number of steps and that

the representation corresponds to a facet of the convex hull of the dictionary.

First, we prove that GBP converges to an exact representation. At each iteration of GBP there

is a decrease in approximation error, as stated in the following theorem.
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Algorithm 2 AddAtom

Input

• The signal x

• The dictionary D
• The current representation I,A
• The atom to add k, ψk
• The current biorthogonal vectors Ψ̃⊥

Output

• The updated representation I,A
• The updated biorthogonal vectors Ψ̃⊥

Procedure

1. Compute the new biorthogonal vector
∀i ∈ I, βi ← 〈ψ̃⊥

i , ψk〉
ψ⊥
k ← ψk −

∑

i∈I βiψi
ψ̃⊥
k ← ψ⊥

k /‖ψ⊥
k ‖22

2. Update the biorthogonal system
∀i ∈ I, ψ̃⊥

i ← ψ̃⊥
i − βiψ̃⊥

k

Ψ̃⊥ ← Ψ̃⊥ ∪ {ψ̃⊥
k }

3. Update the representation
αk ← 〈x, ψ̃⊥

k 〉
∀i ∈ I, αi ← αi − βiαk
I ← I ∪ {k}
A ← A ∪ {αk}

Theorem 1. Given a signal x ∈ R
d and a dictionary D = {ψi}ni=1, where n≥2d, ∀ψi ∈ D, ψi ∈ R

d

and ‖ψi‖2 = 1, if ψi ∈ D then −ψi ∈ D, and the atoms are in general position, if GBP is run with

D and x as input and if x̃(t) 6= 0, then at iteration t+ 1 of GBP, 0 ≤ ‖x− x̃(t+1)‖2 < ‖x− x̃(t)‖2.

Proof. At iteration t, let S be the hypersphere centered at x with radius ‖x− x̃(t)‖2, let ψk be the

next atom selected by GBP, and let T be the tangent plane to S at x̃(t). T contains the origin (if it

did not, then some scaling of x̃(t) would be a better approximation to x), and thus bisects the unit

sphere. Because the atoms are in general position, n ≥ 2d, and ψi ∈ D if −ψi ∈ D, if |Ψ(t)|<d,

then there will be at least one atom in the same half-space of T as x. (Note that if |Ψ(t)|= d, we

are done, as we would also have x̃ = x.)

ψk lies in the same half-space of T as x: by construction, there is no atom ψ0 such that

〈ψ0 − x̃(t)
H ,n

(t)〉 > 0, by general position, there is no atom ψ0 such that 〈ψ0 − x̃(t)
H ,n

(t)〉 = 0 and

〈ψ0 − x̃(t)
H ,v

(t)〉 > 0, and, by the ordering of atoms by step 2(b) of GBP, GBP selects an atom in
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Algorithm 3 SubtractAtom

Input

• The signal x

• The current representation I,A
• The index of the atom to subtract k

• The current biorthogonal vectors Ψ̃⊥

Output

• The updated representation I,A,
• The updated biorthogonal vectors Ψ̃⊥

Procedure

1. Delete the atom from the representation
I ← I − {k}
A ← A− {αk}

2. Update the biorthogonal system
Ψ̃⊥ ← Ψ̃⊥ − {ψ̃⊥

k }
∀i ∈ I, γi ← 〈ψ̃⊥

k , ψ̃
⊥
i 〉/‖ψ̃⊥

k ‖22
∀i ∈ I, ψ̃⊥

i ← ψ̃⊥
i − γiψ̃⊥

k

3. Update the representation
∀i ∈ I, αi ← αi − αkγi

the same half-space of T as x, if one exists.

ψk lies in the same half-space as x, we can find a point x̃+ ǫ(ψk− x̃(t)) that is interior to S and

therefore closer to x than x̃(t). Therefore ‖x− x̃(t+1)‖ < ‖x− x̃(t)‖.

Theorem 1 also implies that GBP does not cycle. GBP may select the same atom more than

once, that is, GBP may select an atom, discard it, and select it again (this behaviour depends on

the shape of the facets of conv(D)), but GBP will never revisit the same state. Because there are a

finite number of states and GBP improves at each iteration, GBP converges. By the same arguments

as Theorem 1, at convergence the final supporting hyperplane contains a facet of conv(D) and thus

GBP computes the minimum ℓ1-norm representation.

The duality of GBP to the gravitational method [77] of linear programming, implies that the

computationaly complexity of GBP is exponential in the worst-case [76]. Current results on the

simplex algorithm suggest that GBP is likely to be polynomial in the average [15] and smoothed [96]

cases.
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4.3 Implementation Issues

We briefly describe two obstacles that any implementation of GBP may encounter, degeneracy and

numerical instability, and our approach to handling them.

4.3.1 Degeneracy

Degeneracy occurs when the atoms of the dictionary are not in general position; the atoms are in

general position if every k-face of conv(D) contains exactly k + 1 atoms [107]. Degeneracy can

occur if the dictionary is specially designed, for example, if the atoms are defined to be the vertices

of a hypercube inscribed in the unit hypersphere. If GBP encounters degeneracy, the updates

described in Section 4.1.3 will fail, resulting in an error. Although GBP does not currently include

a mechanism to detect and handle degeneracy, incorporating such a feature is possible. A simple

solution is to perturb the atoms of the dictionary sufficiently to place them in general position; see

Section 5.1.

4.3.2 Numerical instability

Numerical instability can occur in the biorthogonalization stage of GBP. Let Ψ be a matrix cor-

responding to Ψ(t) for some t, where each row of Ψ is an atom in Ψ(t), and let Ψ̃⊥ denote the

corresponding matrix of biorthogonal vectors. If at any iteration the matrix Ψ is ill-conditioned,

the computation of the biorthogonal vectors we have described may be unstable (similar difficul-

ties arise in Gram-Schmidt orthogonalization [89, 13]). One work around is to compute a full

biorthogonalization at each iteration, or at least whenever instability is detected. However, a full

biorthogonalization can be costly, as it is typically computed via the pseudoinverse [57]: since

Ψ
(

Ψ̃⊥
)T

= I, where I denotes the identity matrix, we can compute Ψ̃⊥ as (Ψ+)
T
, where ‘+’

denotes the pseudoinverse.

We instead opt to compute the biorthogonalization using an iterative pseudoinverse tech-

nique [9]. This technique takes an initial estimate of the pseudoinverse and iteratively updates

it, converging to the true pseudoinverse. If the initial estimate is sufficiently close to the true pseu-
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doinverse, then the iterative pseudoinverse computation is substantially faster than the standard

pseudoinverse. This approach is well suited to GBP, as the adaptive biorthogonalization already

provides such an estimate.

The iterative pseudoinverse algorithm proceeds as follows. Given a matrix Ψ and an initial

estimate of the pseudoinverse Ψ+(0), the updates to Ψ+ are computed by

Ψ+(t+1) ← Ψ+(t)
(

2I−ΨΨ+(t)
)

(Note that here t denotes the iteration of the pseudoinverse algorithm, not the iteration of GBP.)

For a detailed analysis of this algorithm, see [95]. While a classic technique, this algorithm is the

subject of ongoing research [82, 85].

Our implementation of GBP tests if Ψ
(

Ψ̃⊥
)T

= I within a specified level of tolerance after

each adaptive biorthogonalization. If the test fails, the iterative pseudoinverse algorithm is applied.

5 Results

We examine the performance of GBP. We compared the running time of GBP to that of standard

linear programming algorithms on three data sets, random data, speech data, and seismic data,

described below. We also provide an example of GBP’s performance on a single signal and contrast

it with that of Matching Pursuit.

In each experiment, we measured the running times of GBP and standard linear programming

algorithms on the signal representation problems described below. The algorithms we compared

were GBP, two variants of the simplex method, and an interior point method.

The implementation of GBP used was our own, written entirely in Matlab. The linear pro-

gramming solvers used were those included in the Matlab Optimization Toolbox 3.0 [4], and a

freely available Matlab implementation [75] of the revised simplex method [27]. The Optimization

Toolbox version of the simplex method is the classical simplex method [28], with the initial basis

determined as in [11]. The Optimization Toolbox version of the interior point method is essentially

LIPSOL [106], a freely available interior point solver that implements Mehrotra’s predictor-corrector

method [73, 70].
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For each problem, all algorithms were run and timed. All algorithms were run under Matlab 7

on a 1.5GHz Pentium M processor running Windows XP, with 1.25GB memory. On all problems

all algorithms returned identical representations (up to the specified error tolerance).

5.1 Running times: Random data

The random data set consisted of 3000 randomly generated signal representation problems, varying

both the dimension of the signal space and the overcompleteness of the dictionary. Each problem

consisted of a randomly generated signal and a randomly generated dictionary. The dimension d of

the problems varied over the set {8, 16, 32, 64, 128, 256}. The overcompleteness k of the dictionaries

varied over the set {2, 4, 8, 16, 32}. In each problem, the signal x was randomly generated to be

uniformly distributed on the unit hypersphere in R
d. The dictionary for each problem had 2kd

atoms; the first kd of these atoms were generated in the same fashion as the signal, the second kd

atoms were the negatives of the first kd atoms. Additionally, the dictionary of each problem was

perturbed: To each atom was added Gaussian noise with variance 0.000001, after which the atom

was normalized to lie on the unit hypersphere; this perurbation ensures that the linear programming

algorithms can compute the requisite matrix inverses; for structured dictionaries this perturbation

also ensures that the atoms are in general position. For each d-k pair, 100 problems were generated.

Figure 4 shows running times of the three algorithms as a function of overcompleteness for each

dimension; the curve plotted shows the mean running time of each algorithm over the 100 problems

of the specified dimension and overcompleteness, with error bars showing the corresponding min-

imum and maximum running times. (We do not show the results of the revised simplex method

here, as it was outperformed by the Matlab’s simplex algorithm.)

5.2 Running times: Speech data

The speech data set consisted of 100 signal representation problems. Each problem consisted of

a signal randomly drawn from the TIMIT database [53] and an overcomplete multiscale Gabor

dictionary.

Each signal comprised 256 samples (d = 256) and was randomly selected from the ‘train’ subset

20

54



2 4 8 16 32
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Running time as a function of overcompleteness
8 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Running time as a function of overcompleteness
16 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

2 4 8 16 32
0

1

2

3

4

5

6

7

8

Running time as a function of overcompleteness
32 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

2 4 8 16 32
0

5

10

15

20

25

30

35

40

45

Running time as a function of overcompleteness
64 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

2 4 8 16 32
0

50

100

150

200

250

300

Running time as a function of overcompleteness
128 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

Running time as a function of overcompleteness
256 dimensions

k

T
im

e 
(C

P
U

 s
ec

on
ds

)

Simplex
LIPSOL
GBP

Figure 4: Running times for GBP, LIPSOL, and the simplex method (Matlab) on the random data

set, plotted as a function of overcompleteness for each dimension. Note that GBP’s performance

improves relative to the other methods as the dimensionality of the problems increase.
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Figure 5: Four signals drawn from the speech data set. Each signal consists of 256 samples.

Figure 6: Four atoms drawn from the multiscale Gabor cosine dictionary.

of the TIMIT database. The signals were mean centered and normalized. Some samples are shown

in Figure 5.

The dictionary used was a 9×overcomplete multiscale Gabor dictionary (4608 atoms). The

dictionary consisted of several fixed scale critically sampled cosine Gabor bases. Each atom was

defined by the parameters t0 and f as G(t; t0, f) = (1/(2πσ)) exp−(t−t0)2/σ2
cos(2πf(t− t0)), where

t0 ∈ {0 : ∆t : 1} and f ∈ {0 : ∆f : d/2}, with ∆t = 2j/d, σ =
√

π/2/∆t, and ∆f = σ/
√

2π;

the scale parameter j varied over {0, 1, . . . , 8}. See [52, 45] for details and other sampling schemes.

Once the atoms were defined, they were perturbed as in the random data case. Some samples from

the final dictionary are shown in Figure 6.

We show the running times of GBP, LIPSOL, and the revised simplex method on the sound

data set in Table 1. (The revised simplex method outperformed Matlab’s simplex method.) We

show the mean, minimum, and maximum runninng times for each algorithm on the 100 signals.

5.3 Running times: Seismic data

The seismic data consists of 100 signal representation problem. Each problem consists of a 256

sample signal of seismic recordings from the North Sea, 4 times downsampled from the original

data [94]; some samples are shown in Figure 7. The dictionary used was the same as used in the
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Algorithm Min Mean Max

GBP 40.41 48.72 56.35

LIPSOL 58.62 75.97 155.56

Revised Simplex 441.66 1297.65 2700.51

Table 1: Running times of GBP, LIPSOL, and the revised simplex method on the sound data set,

in CPU seconds.

Figure 7: Four signals drawn from the seismic data set. Each signal consists of 256 samples.

speech experiment above. We show the running times of GBP, LIPSOL, and the revised simplex

method on the seismic data set in Table 2.

5.4 Example: Speech signal

Figure 8 provides an example comparing GBP to MP and OMP on a 1024-dimensional signal (Figure

8, top left), selected from the TIMIT speech database [53], using a multiscale Gabor dictionary

(n = 22528), similar to the one used for the sound data. (Note that the other BP methods were

unable to compute representations on problems of this size in our environment.) Examining the

Algorithm Min Mean Max

GBP 42.29 48.83 55.05

LIPSOL 60.52 70.36 112.90

Revised Simplex 2233.45 2489.05 2831.59

Table 2: Running times of GBP, LIPSOL, and the revised simplex method on the seismic data set,

in CPU seconds.
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approximation error of each algorithm as a function of iteration (Figure 8, top right), we observe

that while the approximation error of GBP decreases somewhat more slowly than that of MP

(note also that each iteration of GBP is more costly), the error of GBP does appear to decrease

approximately exponentially. Also note that the representation computed by GBP is sparser than

that of MP, though less sparse than that of OMP, as indicated by the sorted-amplitudes-curves and

the ℓ1-norm of the representations. The sorted-amplitudes-curves [66, 62] (Figure 8, bottom left)

are plots of the logarithm of the final coefficients, sorted in descending order; the rates of decrease

indicate the relative sparsity of the representations. The ℓ1-norm of the representation coefficients

are 0.3274, 0.4569, and 0.4156 for GBP, MP, and OMP respectively. (Note that the results for

GBP would be the same as those for standard linear programming methods for BP.) The feature

of GBP to note here is its ‘greediness’: the coefficients in the order of atom selection track the

sorted-amplitudes-curve, that is, GBP tends to select significant atoms early on (Figure 8, bottom

right). This demonstrates that it is possible to compute Basis Pursuit signal representations and

to be greedy at the same time.

6 Discussion

Our results show that GBP provides a fast alternative to standard linear programming methods for

sparse signal representation problems, particularly when the dimension of the signal space is high

and the dictionary is very overcomplete. While there are a variety of factors which may contribute

to the results, there are several algorithmic reasons why we expect GBP to perform well relatively.

The efficient solution of linear programming problems depends in a complicated way on the

problem, the method of solution and its implementation, and the available resources; see Bixby [12].

Thus the relative success of GBP compared to the linear programming methods implemented in

the Matlab Optimization Toolbox is partially a function of the specific methods used and their

implementation. There are many available linear programming packages [48], some specific to sparse

representation include Atomizer [1], ℓ1-MAGIC [2], and SparseLab [3]. An exhaustive comparison

of GBP against all of these methods is out of the scope of the present paper. However, while
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Figure 8: An example comparing GBP to MP on a speech signal (a). (b) The log of the error

(ℓ2-norm of the residual) as a function of iteration. (c) The sorted-amplitudes-curves; observe that

GBP produces a sparser representation than MP. (d) The (final) coefficient values, in order of

atom selection. (Note that the coefficient values change in GBP at each iteration.) See text for

discussion.

the linear programming methods against which GBP was compared may not represent the current

state-of-the-art, it is worth noting that GBP itself has the potential for significant speed increases

through more efficient implementation.

Algorithmically, GBP has several advantages over standard linear program solvers. First, most

linear program solvers assume, for historical reasons, that the constraint matrix is sparse, and they

therefore rely on techniques that exploit this sparsity, whether or not sparsity is actually present [22].

The signal representation problems considered here are not particularly sparse in this sense: the

random dictionary matrices used in the random data set are certainly not sparse, while the Gabor

dictionary matrices used with the sound and seismic data sets are somewhat sparse, however the
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matrices are not sufficiently structured for certain fast algorithms to be applicable [20, 21]. GBP

does not exploit this sparsity, and therefore does not suffer when it is not present. Second, GBP

is efficient in the search for the next atom to select, because this search is based on a geometric

criterion that involves 2 projections per possible atom. Simplex methods can be inefficient at this

task as the search can involve evaluating more than 2, even d, projections per possible atom; see

[104, 101]. Third, the updates in GBP are seldom of a full basis, further reducing computation.

Finally, the complexity of the simplex method depends on the closeness of the initial solution to

the optimal solution, which in turn depends on the phase I algorithm by which the initial basis is

selected. GBP does not depend on an intial solution; in fact, GBP can be interpreted as a combined

phase I/ phase II linear programming algorithm.

One area which we have not explored that merits further investigation is the dependence of

the performance of GBP (and other sparse representation algorithms) on the structure of the

dictionary. For example, a dictionary optimized for use with MP [30] or OMP [44] may well have

very different properties from one optimized for BP. The design of dictionaries has only recently

received attention in the signal processing community [30, 44, 5] (for work in neural computation,

see [80, 69]); our work suggests that the geometric properties of dictionaries play a crucial role in

both the efficiency of representation algorithms and the quality of the resulting representations.

Indeed, geometric considerations have already led to a better theoretical understanding of sparse

signal representation [39, 38].

As noted, part of the motivation for the development of BP is the observation that MP and

OMP can fail to find sparse, in the ℓ0-norm sense, signal representations [21], with much theoretical

work showing under exactly what conditions BP finds sparse representations, i.e., when the minimal

ℓ1-norm solution is equivalent to the minimal ℓ0-norm solution [37, 36, 51]. These findings have

made BP useful for areas beyond signal representation, including compressed sensing [35] and error

correcting codes [16], thus GBP may prove useful in these domains.
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7 Conclusions

We have described GBP, a new algorithm for Basis Pursuit, and demonstrated that it is faster

than standard linear programming methods on some problems, particularly in high-dimensional

signal spaces using very overcomplete dictionaries. A Matlab implementation of GBP is currently

available online at: http://www.cs.yale.edu/~huggins/gbp.html

Computational geometry has traditionally been the preserve of computer science, particularly

computer graphics and theoretical computer science; its use here in the development of GBP

highlights the relevance of computational geometry to signal processing. GBP also illustrates the

interplay between signal processing and linear programming. That an efficient linear programming

algorithm falls naturally out of sparse signal representation is surprising, and suggests that re-

searchers in signal processing should not view linear programming, or optimization in general, as

a black box: on one hand signal processing naturally defines a set of problems that can serve to

drive research in linear programming, on the other hand, given the historical parallels, optimization

research deserves deeper examination by the signal processing community.

Acknowledgements

We thank Mauro Maggioni for many helpful discussions, Ohad Ben-Shahar, Pavel Dimitrov, and

Gang Li for their advice, Karl Skretting for providing the seismic data, and Dan Spielman for his

insight into linear programming. We also thank the three anonymous reviewers for their suggestions

which have considerably improved the article. Research supported by DARPA and AFOSR.

References

[1] http://www-stat.stanford.edu/~atomizer.

[2] http://www.acm.caltech.edu/l1magic.

[3] http://sparselab.stanford.edu.

[4] Optimization Toolbox User’s Guide. The MathWorks, 2003.

[5] M. Aharon, M. Elad, A.M. Bruckstein, and Y. Katz. The K-SVD: An algorithm for designing of overcomplete
dictionaries for sparse representation. IEEE Trans. On Signal Processing, In press.

[6] O.K. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff, and A. Zakhor. Video compression using matching
pursuits. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 1999.

27

61



[7] M. Andrle, L. Rebollo-Neira, and E. Sagianos. Backward-optimized orthogonal matching pursuit approach.
IEEE Signal Processing Letters, 2004.

[8] J.B. Bednar, R. Yarlagadda, and T. Watt. L1 deconvolution and its application to seismic signal processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(6), 1986.

[9] A. Ben-Israel. An iterative method for computing the generalized inverse of an arbitrary matrix. Mathematics
of Computation, 19:452–455, 1965.

[10] F. Bergeaud and S. Mallat. Matching pursuit of images. In Proceedings of the International Conference on
Image Processing, 1995.

[11] R.E. Bixby. Implementing the simplex method: The initial basis. ORSA Journal on Computing, 4(3), 1992.

[12] R.E. Bixby. Solving real-world linear programs: A decade and more of progress. Operations Research, 50(1):3–
15, 2002.

[13] A Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra and its Applications, 197-198:297–316,
1994.

[14] P. Bofill and M. Zibulevsky. Underdetermined blind source separation using sparse representations. Signal
Processing, 81:2353–2362, 2001.

[15] K.H. Borgwardt. The Simplex Method - A Probabilistic Analysis. Springer-Verlag, 1987.

[16] E. Candes, M. Rudelson, R. Vershynin, and T. Tao. Error correction via linear programming. In FOCS, 2005.

[17] D.R. Chand and S.S. Kapur. An algorithm for convex polytopes. Journal of the Association for Computing
Machinery, 17(1):78–86, 1970.

[18] S.Y. Chang and K.G. Murty. The steepest descent gravitational method for linear programming. Discrete
Applied Mathematics, 25:211–239, 1989.

[19] S. Chen and D. Donoho. Basis pursuit. In Twenty-Eighth Asilomar Conference on Signals, Systems & Com-
puters, 1994.

[20] S.S. Chen. Basis Pursuit. PhD thesis, Stanford University, Department of Statistics, 1995.

[21] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43(1):129–
159, 2001.
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Data fusion and multi-cue data matching by

diffusion maps
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Abstract

Data fusion and multi-cue data matching are fundamental tasks in high dimensional data analysis. In this

paper, we apply the recently introduced diffusion framework to address these tasks. Our contribution is three-fold.

First, we present the Laplace-Beltrami approach to computing density invariant embeddings which are essential

for integrating different sources of data. Second, we describe a refinement of the Nyström extension algorithm

called “geometric harmonics”. We also explain how to use this tool for data assimilation. Finally, we introduce a

multi-cue data matching scheme based on nonlinear spectral graphs alignment.

The effectiveness of the proposed scheme is validated by applying it to the lip reading and image sequence

alignment.
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I. I NTRODUCTION

The processing of massive high-dimensional data sets is a contemporary challenge. Suppose that a

sources produces high-dimensional data{x1, ..., xn} that we wish to analyze. For instance, each data
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point could be the frames of a movie produced by a digital camera, or the pixels of a hyperspectral image.

When dealing with this type of data, the high-dimensionality is an obstacle for any efficient processing

of the data. Indeed, many classical data processing algorithms have a computational complexity that

grows exponentially with the dimension (this is the so-called “curse of dimensionality”). On the other

hand, the sources may have a limited number of degrees of freedom. In this case, the high dimensional

representation of the data is an unfortunate (but often necessary) artifact of the choice of sensors or the

acquisition device. This means that the data have a low intrinsic dimensionality, or equivalently, that

many of the variables that describe each data points are highly correlated, at least locally. Therefore it

is possible to obtain low-dimensional representations of the samples. Note that since the variables are

correlated only locally, classical global dimension reduction methods like Principal Component Analysis

and Multidimensional Scaling do not provide, in general, an efficient dimension reduction.

First introduced in the context of manifold learning, eigenmaps techniques [1], [2], [3], [4] are becoming

increasingly popular as they overcome this problem. Indeed, they perform a nonlinear reduction of the

dimension by providing a parametrization of the data set that preserves neighborhoods. However, the new

representation that one obtains is highly sensitive to the way the data points were originally sampled. More

precisely, if the data are assumed to approximately lie on a manifold, then the eigenmap representation

depends on the density of the points on this manifold [5]. This issue is of critical importance in applications

as one often needs tomerge datathat were produced by the same source but acquired with different devices

or sensors, at various sampling rates and possibly on different occasions. In that case, it is necessary to have

a canonical representation of the data that retains the intrinsic constraints of the samples (e.g. manifold

geometry) regardless of the particular distribution of the datasets sampled by different devices.

Another important issue is that ofdata matching. This question arises when one needs to establish a

correspondence between two data sets resulting from the same fundamental source. For instance, consider

the problem of matching pixels of a stereo image pair. One can form a graph for each image, where pixels

constitute the nodes, and where edges are weighted according to the local features in the image. The
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problem now boils down to matching nodes between two graphs. Note that this situation is an instance of

multi-sensor integration problem, in which one needs to find the correspondence between data captured by

different sensors. In some applications, like fraud detection, synchronizing data sets is used for detecting

discrepancies rather than similarities between data sets.

The out-of-sample extension problem is another aspect of the data fusion problem. The idea is to

extend a function known on a training set to a new point using both the target function and the geometry

of training domain. The new point and the corresponding value of the function can then be assimilated

to the training set. This is an essential component in any scheme that agglomerates knowledge over an

initial data set and then applies the inferred structure to new data. Recently, Belkinet al have developed

a solution to this problem via the concept of manifold regularization [6]. Earlier, several authors used

the Nyström extension procedure in the Machine Learning context [7], [8] in order to extend eigenmap

coordinates. In both cases, the question of the scale of the extension kernel remains unanswered. In other

words, given an empirical function on a data set, to what distance to the training set can this function

be extended ? In particular, given the spectral embedding of the data set, which kernel should be used to

extend it?

By relating the frequency content of the target function on the training set to the extrinsic Fourier

analysis, Coifmanet al provide an answer to this question [9]. They developed the idea of “geometric

harmonics” based on the Nyström extension at different scales, providing a multiscale extension scheme

for empirical functions. We apply this concept to the extension of spectral embeddings and show that

the extension has to be conducted using a specially designed kernel which differs from data embedding

kernel.

In this article, we show that the questions discussed above can be efficiently addressed by the general

diffusion framework introduced in [10], [11]. The main idea is that, just like for eigenmaps methods,

eigenvectors of Markov matrices can be used to embed any graph into a Euclidean space and achieve

dimension reduction. Building on these ideas, the contribution of this paper is three-fold: first, we show
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that by carefully normalizing the Markov matrix, the embedding can be made invariant to the density of the

sampled data points, thus solving the problem of data fusion encountered with other eigenmaps methods.

Then, we address the problem of out-of-sample extension, and we explain how to extend empirical

functions to new samples using the geometric harmonics. Last, we take advantage of the density-invariant

representation of data sets provided by the diffusion coordinates to derive a simple data matching algorithm

based on geometrical embeddings alignment.

The proposed scheme is experimentally verified by applying it to visual data analysis. First, we address

the problem of automatic lip reading by embedding the lips images using the Laplace-Beltrami and deriving

an automatic lip reading scheme where new data is assimilated using geometric harmonics. Second, we

demonstrate the multi-cue data matching aspect of our work by matching image sequences corresponding

to similar head motions.

This paper is organized as follows: we start by recalling the diffusion framework, and the notion of

diffusion maps in Section II. We then explain in Section II-B how to normalize the diffusion kernel in

order to separate the geometry (constraints) of the data from the distribution of the points. We describe the

out-of-sample extension procedure via the geometric harmonics in Section II-D and present a nonlinear

algorithms for matching two data sets. Last, we illustrate these ideas by applying it to lip reading and

sequence alignment in Section III.

II. T HE DIFFUSION FRAMEWORK

A. Diffusion maps and diffusion distances

Let Ω = {x1, ..., xn} be n data points. In this section, we recall the diffusion framework as described

in [5], [12]. The main point of this set of techniques is to introduce a useful metric on data sets based

on the connectivity of points within the graph of the data, and also to provide coordinates on the data set

that reorganize the points according to this metric.

The first step in our construction is to view these points as being the nodes of a symmetric graph in

which two nodes are connected by an edge if they are very similar. The very notion of similarity between
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two data points is completely application-driven. In many situations, each data point is a collection of

numerical measurements and can be thought of as a point in a Euclidean feature space. In this case,

similarity is measured in terms of closeness in this space, and it is custom to weight the edge betweenxi

and xj by exp(‖xi − xj‖2/ε), whereε > 0 is a scale parameter. More generally, we allow ourselves to

consider arbitrary weight functionsw(·, ·) that verify the following two conditions, for allx andy in Ω:

• it is symmetric:w(x, y) = w(x, y),

• it is pointwise non-negative:w(x, y) ≥ 0.

The weight function or kernel describes the first-order interaction between the data points as it defines

the nearest neighbor structures in the graph. The analysis of the data provided by the diffusion techniques

depends heavily on the choice of the weight function.

Following a classical construction in spectral graph theory [13], namely the normalized graph Laplacian,

we now create a random walk on the data setΩ by forming the following kernel:

p1(x, y) =
w(x, y)

d(x)
,

whered(x) =
∑

z∈Ω w(x, z) is the degree of nodex.

Since we have thatp1(x, y) ≥ 0 and
∑

y∈Ω p1(x, y) = 1, the quantityp1(x, y) can be interpreted as the

probability of a random walker to jump fromx to y in a single time step. IfP is the n × n matrix of

transition of this Markov chain, then taking powers of this matrix amounts to running the chain forward

in time. Let pt(·, ·) be the kernel corresponding to thetth power of the matrixP . In other words,pt(·, ·)

describes the probabilities of transition int time steps.

The asymptotic behavior of this random walk has been used to find clusters in the data set [13], [14]

where the first non-constant eigenfunction is used as a classification function into two clusters. More

recently, using the other eigenfunctions was considered [15]. Fort = +∞, this Markov chain is governed

by a unique stationary distributionφ0, which means that

lim
t→+∞

pt(x, y) = φ0(y) .
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The vectorφ0 is the top left eigenvector ofP , i.e., φT
0 P = φT

0 , and it can be checked thatφ0(y) is given

by

φ0(y) =
d(y)∑

z∈Ω d(z)
.

It can be shown [12] that the pre-asymptotic regime is governed according to the following eigendecom-

position

pt(x, y) =
∑

l≥0

λt
lψl(x)φl(y) , (1)

where {λl} is the sequence of eigenvalues ofP (with |λ0| ≥ |λ1| ≥ ...) and {φl} and {ψl} are the

corresponding left and right eigenvectors (see the appendix for a proof). Furthermore, because of the

spectrum decay, only a few terms are needed to achieve a given relative accuracyδ > 0 in the previous

sum. Letm(t) be this number.

Unifying ideas from Markov chains and potential theory, the diffusion distance between two pointsx

andz was introduced in [12], [5] as

D2
t (x, z) =

∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
. (2)

This quantity is simply a weightedL2 distance between the conditional probabilitiespt(x, ·), andpt(z, ·).

These probabilities can be thought of as features attached to the pointsx and z, and they measure the

influence or interaction of these two nodes with the rest of the graph. If one increasest, one propagates

the local or short-term influence of each node to its nearest neighbors, and this means thatt also plays

the role of a scale parameter. The comparison of these conditional probabilities introduces a notion of

proximity that accounts for the connectivity of the points in the graph. In particular, unlike the shortest

path, or geodesic distance, this metric is robust to noise as it involves an integration along all paths of

length t starting fromx or z.

The connection between the diffusion distance and the eigenvectors goes as follows (see appendix):

D2
t (x, z) =

∑

l≥1

λ2t
l (ψl(x)− ψl(z))2 . (3)
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Note that theψ0 does not appear in the sum because it is constant. This identity means that the right

eigenvectors can be used to compute the diffusion distance. Furthermore, because of the spectrum decay,

only a few terms are needed to achieve a given relative accuracyδ > 0 in the previous sum. Letm(t) be

this number, and define the diffusion map

Ψt : x 7−→




λt
1ψ1(x)

λt
2ψ2(x)

...

λt
m(t)ψm(t)(x)




. (4)

This mapping provides coordinates on the data setΩ, and embeds then data points into the Euclidean

spaceRm(t). In addition, the spectrum decay is the reason why dimension reduction can be achieved.

This method constitutes a universal and data-driven way to represent a graph or any generic data set as a

cloud of points in a Euclidean space. We also obtain a complete parametrization of the data that captures

relevant modes of variability. Moreover, the dimensionm(t) of the new representation only depends on the

properties of the random walk on the data, and not on the number of features of the original representation

of the data. In particular, if we increaset, thenm(t) decreases and we capture the large scale geometry

of the data.

B. Data merging using the Laplace-Beltrami normalization

We now direct our attention to the case when the original data pointsΩ = {x1, ..., xn} are assumed to

approximately lie on a submanifoldM of Rd. The so called “manifold model” holds for a large variety

of situations, such as when the data is produced by a source controlled by a few free parameters. For

instance, consider the rotation of a human head and the lips motion of a speaker. We will study these

examples later in this paper.

On the manifoldM, the data points were sampled with a densityq(·) that may reflect some important

aspect of the phenomenon that generated the data. For instance, as described in [12], for some data sets,

the density is related to the free energy surface that governs the samples. On the other hand, the density
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may depend on the acquisition process and may be unrelated to intrinsic geometry or dynamics of the

underlying phenomenon. In this situation, the distribution of the points is an artifact of the sampling

process, and consequently, any “good” representation of the data should be invariant to the density.

Classical eigenmap methods provide an embedding that combines the information of both the density

and geometry. For instance, with the Laplacian eigenmaps [2], one starts by forming the graph with

Gaussian weightswε(x, y) = exp(−‖x − y‖2/ε), and then constructs the random walk as described in

the previous section. The eigenvectors are then used to embed the data set into a Euclidean space. It was

shown in [10] that in the large sample limitn → +∞ and small scaleε → 0, the eigenvectors tend to

those of the Schrödinger operator∆ + E, where∆ is the Laplace-Beltrami operator onM, andE is a

scalar potential that depends on the densityq. As a consequence, the Laplacian eigenmaps representation

of the data heavily depends on the density of the data points. In particular, it makes it impossible to fuse

two data sets obtained from the same sensors but with different densities.

In order to solve this problem, we suggest to renormalize the Gaussian edge weightswε(·, ·) with an

estimate of the density and to form the random walk on this new graph. This is summarized in Algorithm

1.

Let Pε be the transition matrix with entriespε(·, ·). The asymptotics forPε are given in the following

theorem.

Theorem 1:In the limit of large sample and small scales, we have

lim
ε→0

lim
n→+∞

I − Pε

ε
= ∆ .

In particular, the eigenvectors ofPε tend to those of the Laplace-Beltrami operator onM. We refer to [5]

for a proof. This result shows that the diffusion embedding that one obtains from an appropriately renor-

malized Gaussian kernel does not depend on the densityq of the data points ofM. This algorithm allows

to successfully capture the nonlinear constraints governing the data, independently from the distribution

of the points. In other words, it separates the geometry of the manifold from the density.
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Algorithm 1 Approximation of the Laplace-Beltrami diffusion

1: Start with a rotation-invariant kernelwε(x, y) = h
(
‖x−y‖2

ε

)
.

2: Let

qε(x) ,
∑
y∈Ω

wε(x, y) ,

and form the new kernel

w̃ε(x, y) =
wε(x, y)

qε(x)qε(y)
. (5)

3: Apply the normalized graph Laplacian construction to this kernel,i.e., set

dε(x) =
∑
z∈Ω

w̃ε(x, y) ,

and define the anisotropic transition kernel

pε(x, y) =
w̃ε(x, y)

dε(x)
.

C. Out-of-sample extension and the geometric harmonics

In most applications, it is essential to be able to extend the low dimensional representation computed

on a training set to new samples. LetΩ be a data set andΨt be its diffusion embedding map. We now

present the geometric harmonic scheme that allows us to extendΨt to a new data set̃Ω. Since we need

to relate the new samples to the training set, we will assume thatΩ is a subset of a Euclidean spaceRd.

The focal point of our extension scheme is the distinction between the embedding kernelw̃ε used to

computeΨt on Ω and the extension kernelkσ used to extendΨt onto the new data set̃Ω. It was shown

in [9] that the properties required for the expansion kernelkσ are significantly different than the ones of

w̃ε and somewhat contradicting. In particular, while computingΨt one strives to use as small a scale
√

ε

as possible, while for the expanding kernelkσ one would use a scale factorσ as large as possible. The

geometric harmonic algorithm was first introduced in [9] and is based on the idea of using the Nyström

extension to expand the eigenvectors of the specially designed kernelkσ from Ω to Ω̃. These eigenvectors

form a basis that can be used to extend any functionf given onΩ to Ω̃ and in particular the vector
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function Ψt. In our application we used a Gaussian extension kernelkσ(x, y) = e−‖x−y‖2/σ2
to extend

Ψt computed by the Laplace-Beltrami kernel given in Equation 5. In previous works [7], the Nyström

extension was used to extendΨt using the same kernel̃wε.

Next, we discuss the design of the extension kernelkσ and provide a scheme for its computation in

Algorithm 2. The design is based on finding an equilibrium betweenσ, the width of the extension kernel

kσ and the reconstruction error of the functionf on Ω using only a subset of the eigenvectors ofkσ. On

the one hand, we aim to increaseσ as much as possible to maximize the extension range. But on the other

hand, as shown below, this also increases the reconstruction error off . Hence, the reconstruction error

limits the maximal extension range. In fact, this limitation can be regarded as relating the complexity of

the function on the training set to the distance to which it can be extended off this set. Here, the notion

of complexity is measured in terms of frequency content on the training domain. For instance, a constant

function has almost no complexity and one should be able to extend it in the entire space. If the number

of oscillations of this function increases, then the distance to which one can extend it gets smaller.

We first recall the idea of Nyström extension [16]. Letσ > 0 be a scale of extension, and consider the

eigenvectors and eigenvalues of a Gaussian kernel of widthσ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω .

Since the kernel can be evaluated the entire space, it is possible to take anyx ∈ Rd in the right-hand side

of this identity. This yields the following definition of the Nyström extension ofϕj from Ω to Rd:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd . (6)

Numerically, we have extendedϕl only to a distanceσ from Ω. Such an extension is termed “geometric

harmonic”. As the eigenvectorsϕl form an orthonormal set, an arbitrary functionf can be extended from

Ω to Rd by expressing it as a linear combinations of the geometric harmonicsϕl.

However, as it can be seen from Equation 6 and from the fact thatµl → 0, the extension of someϕl’s

is an ill-posed linear operation. Indeed, the extension of the first(l + 1) eigenfunctions of the Gaussian
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kernel has a condition number equal toµ0/µl. The only way to control the conditioning of this procedure

is to perform regularization by retaining only the coefficients for whichµ0/µl < η (whereη is a bound

on the condition number that plays the role of a regularization parameter):

f '
∑

l: µ0<ηµl

〈ϕl, f〉ϕl .

This approximation generates an error of reconstructingf on Ω. Therefore if we fix an admissible error

thresholdτ > 0, and check whether this error is smaller or larger thanτ . In the former case, the function

f has a low-frequency content and can safely be extended at scaleσ. In the latter case, a non-negligible

energy is lost in high frequency coefficients, andf cannot be extended at scaleσ. Consequently, the scale

σ has to be reduced. A smallerσ results in a slower decay of the eigenvaluesµl and an improved condition

numberη. These observations give rise to the multiscale extension scheme summarized in Algorithm 2.

D. Multi-cue alignment and data matching

The purpose of this section is to explain how the diffusion embedding can be efficiently used for data

matching. Suppose that one has two data setsΩ1 = {x1, ..., xn} and Ω2 = {y1, ..., yn′} for which one

would like to find a correspondence, or detect similar patterns and trends, or on the contrary, underline

their dissimilarity and detect anomalies. This type of task is very common in applications related to

marketing, fraud detection or even counter-terrorism. However, working with the data in its original form

can be quite difficult as the two sets typically consist of measurements of very different nature. For

instanceΩ1 could be a collection of measurements related to wether in a given region, whereasΩ2 could

describe agriculture production in the same region. As a consequence, it is almost always impossible

to directly compare the two data sets. The main idea that we introduce here is that the diffusion maps

provide a canonical representation of data sets. This new representation is based on the graph structure of

a set, which is often the relevant structure in the context of data matching. As a consequence, instead of

comparing the sets in their original forms, it can be much more efficient to compare their embeddings. In

particular, ifΩ1 andΩ2 are expected to have similar structures, then they should have similar embeddings.
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Algorithm 2 Multiscale extension scheme of diffusion coordinates via geometric harmonics

1: Let Ω ⊂ Rd be the training set andψi : Ω → R be the diffusion coordinate to be extended (1 ≤ i ≤

m(t)). Choose a condition numberη > 0 and an admissible errorτ > 0.

2: Choose an initial (large) scale of extensionσ = σ0.

3: Compute the eigenfunctions of the Gaussian kernel with widthσ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω ,

and expandf on this orthonormal basis (on the training setΩ):

f(x) =
∑

l≥0

clϕl(x) wherex ∈ Ω .

4: Compute the error of reconstruction on the training set that one obtains by retaining only the

coefficients such thatη > µ0/µl in the sum above:

Err =


 ∑

l: η≤µ0/µl

|cl|2



1
2

.

If Err > τ then divideσ by 2 and go back to point 3. Otherwise continue.

5: For eachl such thatη > µ0/µl, extendϕl via the Nyström procedure:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd ,

and define the extensionf of f to be

f(x) ,
∑

l≥0

clϕl(x) wherex ∈ Rd .

We illustrate these ideas by presenting a semi-supervised algorithm for finding a one-to-one correspon-

dence between two data sets. The scheme we introduce consists in aligning two graphs in a nonlinear

fashion, based on a finite number of landmarks. More precisely, suppose that we havek < n, n′ landmarks

in each set, that is a sequence ofk pairs (xσ(1), yτ(1)), ..., (xσ(k), yτ(k)) for which there is a known

correspondence. This set of examples is the only prior information we use in the algorithm. We assume that
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xσ(1) 6= xσ(2) 6= ... 6= xσ(k). The scheme given in Algorithm 3 computes a surjective functiong : Ω1 → Ω2

such thatg(xσ(1)) = yτ(1), ..., g(xσ(k)) = yτ(k).

Algorithm 3 Nonlinear graph alignment
1: Start withk landmarks(xσ(1), yτ(1)), ..., (xσ(k), yτ(k)).

2: Compute the diffusion embeddings{Φt(x1), ..., Φt(xn)} and{Φt(y1), ..., Φt(yn′)} of Ω1 andΩ2 where

t is chosen so that at leastk − 1 eigenvectors are retained.

3: Compute the affine functionf : Rk−1 → Rk−1 that satisfies

f(xσ(1)) = yτ(1), ..., f(xσ(k)) = yτ(k) .

4: Define the correspondence betweenΩ1 andΩ2 by

g(xi) = arg min
y∈Ω2

{‖f(xi)− y‖} ,

wherexi ∈ Ω1,

The number of eigenvectors used for the alignment is directly related to the number of landmarks,

which in turns, represents the quantity of prior information for aligning. The larger the number of known

constraints on the alignment, the larger the dimensionality of the aligning mapping. This observation is

consistent with the fact that higher order eigenvectors capture finer structures. Note also that the linear

function that we use for aligning induces a nonlinear mapping defined on lower dimensional embedding

of the sets. These observations pave the way for a general sampling theory for data sets. Indeed, the

landmarks can be regarded as forming a subsampling of the original data sets. This subset determines

the largest (or Nyquist) frequency used to represent the original set. This frequency is measured as the

number of eigenvectors used.
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III. EXPERIMENTAL RESULTS

A. Application to lip-reading

The validity of our approach is now demonstrated by applying it to lip reading and sequence alignment,

which are typical high-dimensional data analysis problems. In particular, lip reading has gained significant

attention [17], [18], [19], [20], [21] and we now provide background and previous results in that field.

The ultimate goal of lip reading is to design human-like man-machine interfaces allowing automatic

comprehension of speech, which in the absence of sound is denoted as lip-reading and the synthesis of

realistic lip movement. The design of such a system involves three main challenges: first, the feature

extraction, which aims at converting the images of the lips into a useful description, must be achieved

with minimal preprocessing. Then, in order to be efficiently processed, the data must be transformed via

a dimension reduction technique. Last, in order to assimilate new data for recognition, one must be able

to perform data fusion.

Previous schemes have mainly focused on the first two points. Concerning the feature extraction, some

works [17], [21] analyze directly the intensity values of the input images, while others [22], [18] start by

detecting curves and points of interest around the mouth whose locations are then used as features. The

combination of audio-visual cues was used in [23] where the visual cues are the extracted lip contours

which are tracked over time. We note that combining audio-visual is beyond the scope of this work and

will be dealt by us in the future. Identifying, tracking and segmenting the lips is a difficult task and possible

solutions include: active contours [24], probabilistic models [25] and the combination of multiple visual

cues (shape, color and motion) [26] to name a few. In practice, one strives to use a simple preprocessing

scheme as possible and in our scheme we employ a simple stabilization scheme discussed below.

Regarding the dimensionality reduction, several schemes have been used. Preliminary work employed

linear algorithms such as the PCA and SVD subspace projections [22], [21]. For instance, Liet al [21]

use a linear PCA scheme similar to the eigenfaces approach to face detection. Recognition is performed

by correlating an input sequence with the eigenfeatures obtained from PCA. More recent schemes [17]
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utilize non-linear approaches such as the MDS [27]. Some of the techniques provide a general embedding

framework for lipreading analysis [17], while others [21], [18] concentrate on a particular task such as

phoneme or word identification. The work in [28] is of particular interest, since it is one of the first

to explicitly formulate the lipreading problem as a “Manifold Learning” issue and tries to derive the

inherent constraints embedded in the space of lip configurations. A Hidden Markov Model (HMM) is

used to model a small number of words (names of four drinks) which define the Markov states and the

manifold. The HMM is then used to recognize the drinks’ names where the input is given by tracking

the outer lips contour using Active Contours. Utilizing both audio and visual information significantly

decreased the error rate, especially in noisy environments. Kimmel and Aharon [17] applied the MDS

scheme to visual lips representation, analysis and synthesis. A set of lips images is aligned and embedded

in a two dimensional domain which is then sampled uniformly in the embedding domain to achieve

uniform density. The pronunciation of each word is defined as a path over the embedding domain and

used for visual speech recognition, by path matching. Lips motion synthesis is derived by computing the

geodesic path over the embedding domain, where the start and end point are given as input.

Analysis of lip data constitutes an application where it is important to separate the set of nonlinear

constraints on the data from the distribution of the points. As an illustration of the Laplace-Beltrami

normalization as well as the out-of-sample extension scheme, we now describe an elementary experiment

that paves the way to building automatic lip-reading machines, and more generally, machine learning

systems.

We recorded a movie of the lips of a subject reading a text in English. The subject was then asked to

repeat each digit “zero”, “one”, ... , “nine” 40 times. A minimal preprocessing was applied to the recorded

sequence. More precisely, it was first converted from colors to gray level. Moreover, using a marker put

at the tip of the nose of the speaker during the recording, we were able to automatically crop each frame

into a rectangular area around the lips. Each of these new frames was then regarded as a point inR140×110,

where140× 110 is the size of the cropped area.
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The first part of the data sets, consisting of approximately 5000 frames, corresponds to the speaker

reading the text. These points were used to form a graph with Gaussian weightsexp(‖xi − xj‖2/ε) on

the edges, for an appropriately chosen scaleε > 0. The distance‖xi − xj‖ was merely calculated as the

EuclideanL2 distance between framesi and j. We then renormalized the Gaussian weights using the

Laplace-Beltrami normalization described in Section II-B. By doing so, our analysis focused on viewing

the mouth as a constrained mechanical system. In order to obtain a low-dimensional parametrization of

these nonlinear constraints, we computed the diffusion coordinates on this new graph. The embedding in

the first 3 eigenfunctions is shown on Figure 1.
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Fig. 1. The embedding of the lip data into the top 3 diffusion coordinates. These coordinates essentially capture two parameters: one

controlling the opening of the mouth and the other measuring the portion of teeth that are visible.

The task we wanted to perform was word recognition on a small vocabulary. The example that we

considered was that of identification of digits. Each word “zero”, “one”,..., “nine” is typically a sequence

25 to 40 frames that we need to project in the diffusion space. In order to do so, we used the geometric

harmonic extension scheme presented in Section II-C to extend each diffusion coordinate to the frames

corresponding to the subject pronouncing the different digits. After this projection, each word can be

viewed as a trajectory in the diffusion space. The word recognition problem now amounts to identifying
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trajectories in the diffusion space.

We can now build a classifier based on comparing a new trajectory to a collection of labelled trajectories

in a training set. We randomly selected 20 instances of each digit to form a training set, the remaining

20 being used as a testing set. In order to compare trajectories in the diffusion space, a metric is needed,

and we chose to use the Hausdorff distance between two setsΓ1 andΓ2, defined as

dH(Γ1, Γ2) = max

{
max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

.

Although this distance does not use the temporal information, it has the advantage of not being sensitive to

the choice of a parametrization or to the sampling density for either setΓ1 andΓ2. For a given trajectory

Γ from the testing set, our classifier is a nearest-neighbor classifier for this metric,i.e., the class ofΓ is

decided to be that of the nearest trajectory (fordH) in the training set. The performance of this classifier

averaged over 100 random trials is shown in Table I. In this case, the data set was embedded in 15

dimensions.

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.93 0 0 0.01 0 0 0.06 0 0 0

one 0 1 0 0 0 0 0 0 0 0

two 0.05 0 0.88 0.05 0.01 0 0.01 0 0 0

three 0.01 0 0.02 0.93 0 0 0.01 0.01 0.01 0.01

four 0 0 0.01 0.01 0.97 0 0 0.01 0 0

five 0 0 0 0.01 0 0.84 0.01 0.14 0 0.01

six 0.04 0 0 0.01 0 0 0.92 0.02 0 0.01

seven 0.02 0 0 0.04 0 0.07 0.10 0.69 0.05 0.03

eight 0 0.01 0 0 0 0.03 0.01 0.04 0.77 0.14

nine 0 0 0 0.02 0 0 0 0.02 0.12 0.85

TABLE I

CLASSIFIER PERFORMANCE OVER100 RANDOM TRIALS. EACH ROW CORRESPONDS THE CLASSIFICATION DISTRIBUTION OF A GIVEN

DIGIT OVER THEN 10 CLASSES. THE DATA SET WAS EMBEDDED IN15 DIMENSIONS.
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The classification error ranges from 0% to 31% with an average of 12.2%. The best classification rate is

achieved for the word “one” which, in terms of visual information, stands far away from the other digits.

In particular, typical sequences of “one” involve frames with a round open mouth, with no teeth visible

(see first row of Figure 2). These frames essentially never appear for other digits. The worst classification

job is for the word “seven” which seems to be highly confused with the words “five” and “six”. As shown

on Figure 2, typical instances of these words appear to be similar in that the central frames involve an

open mouth with visible teeth. In the case of the “six” and “seven”, teeth from the lower jaws are visible

because of the “s” sound. Regarding the similarity between “five” and “seven”, the ”f” and ”v” sounds

translate into the lower lip touching the teeth of the upper jaw.

"FIVE"

"ONE"

"SEVEN"

"SIX"

Fig. 2. Typical frames for the words “one”, “five”, “six”, “seven”.

B. Synchronization of head movement data

We now illustrate the concept of graph alignment as well as the algorithm presented in Section II-D. We

recorded 3 movies of subjects wearing successively a yellow, red and black mask. Each subject was asked

to move their head in front of the camcorder. We then considered the three sets consisting of all frames

of each movie. Let YELLOW, RED and BLACK denote these sets. Our goal was to synchronize the

movements of the different masks by aligning the 3 diffusion embeddings. It is to be noted that working

directly in image space would be highly inefficient since any picture of the red or black mask is at a

large distance from the set of pictures of the yellow mask. On the contrary, the diffusion coordinates will
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capture the intrinsic organization of each data sets, and therefore will provide a canonical representation

of the sets that can be used for matching the data.

Each set of frames was regarded as a collection of points inR10000, where the dimensionality coincides

with the number of pixel per image. Following the lines of our algorithm, we formed a graph from each

set with Gaussian weightsexp(‖xi − xj‖2/ε), for an appropriately chosen scaleε > 0. Here‖xi − xj‖

represents theL2 norm between imagesi andj. We expect each set to lie approximately on a manifold of

dimension 2, as each subject essentially moved their head along two anglesα andβ shown on Figure 3.

and as the light conditions were kept the same during the recording.

β

α

Fig. 3. Each subject essentially moved their head along the two anglesα andβ. There was almost no tilting of the head. Hence, the data

points approximately lie on a submanifold of dimension 2.

It is clear that the density of points on this manifold is essentially arbitrary and varies with each subject

and recording. Since we were only interested in the space of constraints, that is the geometry of the

manifold, we renormalized the Gaussian weights according to the algorithm described in Section II-B,

and constructed a Markov chain that approximates the Laplace-Beltrami diffusion. We then defined 8

matching triplets of landmarks in each set. The landmarks were chosen to correspond to the main head

positions. We computed the diffusion embedding in 7 dimensions and we then calculated two affine

functionsgY R : R7 → R7 andgY B : R7 → R7 that match the landmarks from YELLOW to BLACK, and

from YELLOW to RED.

Two conclusions can be drawn from this experiment. First, the diffusion embedding revealed that the
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ata sets were approximately 2-dimensional, as expected (see Figure 4 for the embeddings in the first 3

diffusion coordinates). The diffusion coordinate captured the main parameters of variability, namely the

anglesα andβ. Second, the two functionsgY B andgY R allowed us to drive the movements of the black

and red masks from those of the yellow mask. The result of the matching of the three data sets is shown

on Figure 5.
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Fig. 4. The embedding of each set in the first 3 diffusion coordinates. The color encodes the density of points.

Fig. 5. The embedding of the YELLOW set in three diffusion coordinates and the various corresponding images after alignment of the

RED and BLACK graphs to YELLOW.

85



IV. CONCLUSION AND FUTURE WORK

In this work we introduced diffusion techniques as a framework for data fusion and multi-cue data

matching by addressing several key issues. First, we underlined the importance of the Laplace-Beltrami

normalization for data fusion by showing that it allows to merge data sets produced by the same source

but with different densities. In particular, the Laplace-Beltrami embedding provides a canonical, density

invariant embedding which is essential for data matching. For example, matching the visual data of

different speakers and the “rotating heads” sequence. Second, we suggested a new data fusion scheme, by

extending spectral embeddings using the geometric harmonics framework. Finally, we presented a spectral

graph alignment approach to data fusion.

Our scheme was successfully applied to lip reading where we achieved high accuracy with minimal

preprocessing. We also demonstrated the alignment of high dimensional visual data (“rotating heads”

sequence).

In the future we intend to extend our approach to multi-cue data analysis, by integrating different

features in a multigraph, constructed by combining the graphs of the different features over the data set.

Finally, we are studying a spectral based approach to the analysis of signals as Markov random processes.

Our current work did not utilize the temporal information of the video sequences, whose frames were

considered as samples of a random variable. By constructing a Markov process model, we intend to

improve the lips reading accuracy using the Viterbi algorithm.
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APPENDIX

DIFFUSION DISTANCE AND EIGENFUNCTIONS

The random walk constructed from a graph via the normalized graph Laplacian procedure yields a

Markov matrix P with entriesp1(x, y). As it is well known [13], this matrix is in fact conjugate to a
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symmetric matrixA with entriesa(x, y), given by

a(x, y) =

√
d(x)

d(y)
p1(x, y) =

w(x, y)√
d(x)d(y)

.

ThereforeA hasn eigenvaluesλ0, ..., λn−1 and orthonormal eigenvectorsv0, ..., vn−1. In particular,

a(x, y) =
n−1∑

l=0

λlvl(x)vl(y) . (7)

This implies thatP has the samen eigenvalues. In addition, it hasn left eigenvectorsφ0, ..., φn−1 andn

right eigenvectorsψ0, ..., ψn−1. Also, it can be checked that

φl(y) = vl(y)v0(y) andψl(x) = vl(x)/v0(x) . (8)

Furthermore, it can be verified thatv0(x) =
√

d(x), and thereforeφ0(y) = d(y) and ψ0(x) = 1. In

addition,

φ0(x)ψl(x) = φl(x) . (9)

It results from Equations 7 and 8 thatP t admits the following spectral decomposition:

pt(x, y) =
n−1∑

l=0

λt
lψl(x)φl(y) , (10)

together with the biorthogonality relation

∑
y∈Ω

φi(y)ψj(y) = δij , (11)

whereδij is Kronecker symbol. Combining this last identity with Equation 9, one obtains

∑
y∈Ω

φi(y)φj(y)

φ0(y)
= δij .

This means that the system{φl} is orthonormal inL2(Ω, 1/φ0). Therefore, if one fixesx, Equation 10

can interpreted as the decomposition of the functionpt(x, ·) over this system, where the coefficients of

decomposition are{λt
lψl(x)}.

Now by definition,

Dt(x, z)2 =
∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
= ‖pt(x, ·)− pt(z, ·)‖2

L2(Ω,1/φ0) .
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Therefore,

Dt(x, y)2 =
n−1∑

l=0

λ2t
l (ψl(x)− ψl(z))2 .
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Abstract

Data fusion and the analysis of high-dimensional multisensor data, are fundamental tasks

in many research communities. In this work we propose a unified embedding scheme for multi

sensory data, which is based on the recently introduced diffusion framework. Our scheme is

purely data-driven and assume no a-priory knowledge of the underlying statistical or deter-

ministic models. Our approach is based on embedding separately each of the input channels

and combining the resulting diffusion coordinates. In particular we use the density invariant

Laplace-Beltrami embedding. In order to verify the efficiency of our approach, we apply it

to typical multisensory statistical learning and clustering applications, such as spoken-digit

recognition and multi-cue image segmentation. For both applications we experimentally show

that using the unified multisensor embedding, allows better performance than the one achieved

by any single sensor.
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1 Introduction

The first task performed by any data processing system is data acquisition or sampling, in which

measurements are collected through a number of sensors. In this work, we refer to a “sensor” any

information stream produced by an acquisition device or, more generally, any descriptor used to

represent some form of data. Single-sensor systems, which process data coming from a unique in-

formation channel, have been successfully used in various context ranging from object recognition

(e.g. Sonar) to the medical area (e.g. blood pressure sensors). However, it was early recognized

that these systems typically suffer from incompleteness due to the fact that a single sensor is almost

never sufficient to capture all of the relevant information related to a phenomenon. For instance,

in medical imaging different sensors, such as X-Ray, CT, MRI and others, asses different physical

properties. This issue was further studied in the context of remote-sensing (SAR, FLIR, IR and

optical sensors). In particular, different sensors are subject to different limitations restricting their

usability. For example, in remote sensing, optical sensors have significantly better resolution and

lower SNR than Radar based SAR sensors, yet SAR sensors are immune to atmospheric conditions

and can be used in any weather conditions. The multisensor approach allows to resolve ambiguities

and reduce uncertainties that may arise in some situations, such as object recognition. For exam-

ple, consider the work by Kidron et. al. [1] who detected image pixels within a video sequence

that were related to the creation of sound, given the visual and audio data. Using only the visual

data was insufficient as some of the motions in a scene were unrelated to the sound creation.

Note also that many living species rely heavily on a multisensor approach (most humans can

see, hear, taste...). In particular, the fusion of audio-visual cues was shown to enhance perception

[2, 3]. Last, it is often more cost-efficient to combine a variety of cheap sensors rather than to deal

with an expensive single sensor.

The use of high-dimensional multisensor signals requires several tasks. First, the signals have

to be embedded in a low-dimensional space that recovers the underlying manifold. When the dif-
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ferent data sources are not synchronized and have to be aligned, this manifold can also be used for

alignment [4]. In particular, as different sources might sample the same phenomenon with differ-

ent densities, the alignment requires a density-invariant embedding, as eigenmap representations

[5, 6, 7, 8] depend on the density of the points on the underlying manifold.

A second task is the alignment and synchronization of different multisensor sources. This was

extensively studied in the remote sensing and medical imaging communities. In such applications,

due to the different physical characteristics of various imaging sensors, the relationship between

the intensities of matching pixels is often complex and unknown a priori. The common approach

to multisensor image alignment is to compute canonical representations of image features, which

are invariant to the dissimilarity between the different sensors and capture the essence of the im-

age. Theses representations include geometrical primitives such as feature points, contours and

corners [9, 10, 11]. Such approaches apply a deterministic a-priori know model that relates the

measurements of the different input channels.

A general purpose approach to high-dimensional data embedding and alignment was presented

by Ham et. al [12]. Given a set of a-priori corresponding points in the different input channels, a

constrained formulation of the graph Laplacian embedding is derived. First, they add a term fixing

the embedding coordinates of certain samples to predefined values. Both sets are then embedded

separately, where certain samples in each set are mapped to the same embedding coordinates.

Second, they describe a dual embedding scheme, where the constrained embeddings of both sets

are computed simultaneously, and the embeddings of certain points in both datasets are constrained

to be identical.

Kidron et.al [1] applied canonical correlation analysis to multisensor event detection. Their

approach uses a parametric form of the covariance matrices to compute maximally correlated one-

dimensional embeddings of the audio and video input signals. A sparsity constraint was applied to

regularize the otherwise underconstrained embedding problem, where the constraint corresponds
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to the sparsity of the detected events.

There is also a large body of literature in engineering related to multisensor integration. These

approaches can be classified into three categories [13]. First, some techniques are based on physical

models for the data, like in the case of Kalman filtering. Another category corresponds to methods

employing a parametric model for the data or the sensors. For instance this is the case of Bayesian

inference, of the Dempster-Shafer method or Neural Networks. These techniques usually exhibit a

high sensitivity to the accuracy of these models [14]. The third group consists of cognitive-based

methods, which aim at mimicking human inference. One of the main tools is fuzzy logic. But

there again, one needs to specify subjective membership functions. It therefore appears that many

of these techniques rely on prior information.

A problem related to data fusion is the fusion of multiple partitionings [15]. The focal point

there is to fuse together differentpartitionings, rather than different datasourcesas in the general

data fusing problem. This approach boils down to embedding the data in a one-dimensional space

(the partitions index). As this is not a metric space, a distance metric can be defined directly and

the work in [15] uses the co-association matrix as a binary similarity measure.

A related problem was recently studied by the computer vision community in the context of

multi-cue image segmentation. These works are of particular interest, as (similar to our approach)

they are based on spectral embeddings [16]. In [17] Yu presents a segmentation scheme that inte-

grates edges detected at multiple scales. These are shown to provide complementary segmentation

cues. Given the affinity matrices computed using the edges at each scale, a simultaneous segmen-

tation is computed using a novel criterion called average cuts. This approach does not explicitly

assume the cues are multiscale and can be applied to using different cues rather than a single cue

in different scales. Other works [18, 19], deal with the fusion of a single multiscale cue in images

and can be applied directly to multisensor data

In this work we derive a unified low-dimensional representation, given as set of different input
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channels related to a particular phenomenon. We assume that the input signals are aligned and

derive a unified representation of them, useful for statistical learning tasks and data partitioning.

We compute a unified low-dimensional representation and show that it combines the information

encoded in the different signals. Thus, is better able to parameterize complex phenomena. We

start by computing low-dimensional embeddings of each of the input signals using the diffusion

framework [20, 21] and for that we utilize the Laplace-Beltrami density invariant scheme [22]. The

multisensor scheme is first applied to statistical learning by analyzing audio-visual based spoken-

digit recognition and we compare our result to the results of the visual-only lip-reading given in

[4]. Then we apply it to multi-cue image segmentation, where the multisensor data is related

to different image cues: RGB, contours and texture. Compared to prior works, the presented

approach does not require any deterministic model of the data or its statistics (covariance matrices

etc.), and the structures that they recover are completely data-driven. In particular, we resolve the

density-dependence issue of the embeddings that was largely overlooked in prior works.

This paper is organized as follows: We describe the foundations of the diffusion based embed-

dings and introduce the unified, fused multisensor embedding in Section 2. Our scheme is then

experimentally verified in Section 3, while concluding remarks and future extensions are discussed

in Section 4.

2 Multi-sensor integration

In this section we present the proposed data fusion scheme. We start by describing low-dimensional

spectral embeddings and then extend them to derive the density-invariant Laplace-Beltrami em-

bedding. A more detailed description can be found in [4], while the mathematical foundations are

given in [22]. Given a setΩ = {x1, ..., xn} of data points, we start by constructing a weighted

symmetric graph where each data pointxi corresponds to a node. Two nodesxi andxj are con-
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nected by an edge with weightw(xi, xj) = w(xj, xi) reflecting the degree of similarity (or affin-

ity) between these two points. The weight functionw(·, ·) describes the first-order interaction

between the data points and its choice is application-driven. For instance, in applications where

a distanced(·, ·) already exists on the data, it is custom to weight the edge betweenxi andxj by

w(xi, xj) = exp(−d(xi, xj)
2/ε), whereε > 0 is a scale parameter. In this paper, although our

method would apply to general weights, we will mainly focus on this type of Gaussian-weight

graph.

Following a classical construction in spectral graph theory [23] and in manifold learning[24],

namely the normalized graph Laplacian, we now create a random walk on the data setΩ by forming

the kernel

p1(xi, xj) =
w(xi, xj)

d(xi)
,

whered(xi) =
∑

xk∈Ω w(xi, xk) is the degree of nodexi. As we have thatp1(xi, xj) ≥ 0 and
∑

j∈Ω p1(xi, xj) = 1, the quantityp1(xi, xj) can be interpreted as the probability of a random

walker to jump fromxi to xj in a single time step [23, 25]. IfP is then×n matrix of transition of

this Markov chain, then taking powers of this matrix amounts to running the chain forward in time.

Let pt(·, ·) be the kernel corresponding to thetth power of the matrixP . Then,pt(·, ·) describes

the probabilities of transition int time steps. The essential point of the diffusion framework is the

idea that running the chain forward will revealintrinsic geometric structuresin the data set, and

taking powers of the matrixP is equivalent to integrating the local geometry of the data at different

scales.

An equivalent way to look at powers ofP is to make use of its eigenvectors and eigenvalues:

it can be showed that there exists a sequence1 = λ0 ≥ |λ1| ≥ |λ2| ≥ ... of eigenvalues and a

collection{ψ0, ψ1, ψ2, ...} of (right) eigenvectors forP :

Pψl = λlψl .

These eigenvalues and eigenvectors provide embedding coordinates for the setΩ. The data points
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can be mapped into a Euclidean space via the embedding

Ψt : x 7−→ 〈
λt

1ψ1(x), . . . , λt
m(t)ψm(t)(x)

〉
, (2.1)

wheret ≥ 0. Discussions regarding the numberm(t) of diffusion coordinates to employ and

concerning the connection with the so-called diffusion distance are provided in [22, 26,?].

Next, we address the issue of obtaining a density-invariant embedding. The point is to make the

embedding reflect only the geometry of the data and be insensitive to the distribution of the points.

Classical eigenmap methods [5, 6, 7, 27], provide an embedding that combines the information of

both the density and geometry, and the embedding coordinates heavily depend on the density of the

data points. In order to remove the influence of the distribution of the data points, we renormalize

the Gaussian edge weightswε(·, ·) with an estimate of the density. This is summarized in Algorithm

1 which was first introduced and analyzed in [22].

Algorithm 1 Approximation of the Laplace-Beltrami diffusion

1: Start with a rotation-invariant kernelwε(xi, xj) = h
(
‖xi−xj‖2

ε

)
.

2: Let

qε(xi) ,
∑
xj∈Ω

wε(xi, xj) ,

and form the new kernel

w̃ε(xi, xj) =
wε(xi, xj)

qε(xi)qε(xj)
. (2.2)

3: Apply the normalized graph Laplacian construction to this kernel,i.e.,set

dε(x) =
∑
z∈Ω

w̃ε(xi, xj) ,

and define the anisotropic transition kernel

pε(xi, xj) =
w̃ε(xi, xj)

dε(xi)
.

Next we describe the data fusion scheme, where, for the sake of clarity, we direct our discussion
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to the case of two input channels, while it can be easily extended to an arbitrary number of them.

Suppose one has two sets of measurements related to a particular phenomenonΩ = {x1, ..., xn}.
Denote these sets of measurementsΩ1 = {y1

1, ..., y
1
n} andΩ2 = {y2

1, ..., y
2
n}, respectively, where

y1
i andy2

i are high-dimensional measurements. We aim to fuseΩ1 andΩ2 by computing a unified

low-dimensional representation̂Ω = {z1, ..., zn}. Note that we assume thatΩ1andΩ2 are aligned,

meaning thaty1
i andy2

i relate to the same instancexi. When this assumption is invalid, one has to

apply a multi-sensor alignment scheme [12] prior to applying the fusion procedure.

We start by computing the Laplace-Beltrami embeddings ofΩ1 andΩ2 denotedΦm1
1 = {φ1

1, ..., φ
1
n)}

andΦm2
2 = {φ2

1, ..., φ
2
n)}, respectively, wheremi is the dimensionality of each embedding. Each

representation reflects the geometry of the data as viewed by each sensor individually. In order to

combine these analyzes into a unified representationΩ̂, we formΩ̂ = {z1, ..., zn} where

zi = {φ1
i , φ

2
i }, (2.3)

φ1
i andφ2

i being of dimensionsm1 andm2, respectively. In general, givenK input sources we have

zi = {φ1
i , . . . , φ

K
i }. (2.4)

This boils down to combining the embedding coordinates corresponding to each samplexi over

the different input channels{Ωi}.
In essence, our scheme is the embedding analogue of boosting [28], where instead of adaptively

integrating the output of several classifiers, we combine different embeddings. In particular, one

can consider an equivalent to theAdaBoostscheme [28] for semi-supervised classification, where

Eq. 2.4 is replaced with

ẑi = {a1φ1
i , . . . , a

KφK
i }, (2.5)

{
a1, . . . , aK

}
being the weights per embedding. In that sense, the embeddingszi can be considered

as different features, and one can apply a standard implementation ofAdaBoostto Eq. 2.4. Yet,
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in this work, the focal point is to derive general-purpose coordinates regardless of a particular

application. The scheme is summarized in Algorithm 2.

Algorithm 2 Multisensor embedding

1: Starting withK input sourcesΩk = {yk
1 , ..., y

k
n}, k = 1...K.

2: Compute the Laplace-Beltrami embeddings of{Ωk}, denotedΦmk
k , wheremk is the dimen-

sionality of the embedding of thek’th channel.

3: Compute the unified coordinates setΩ̂ = {z1, ..., zn} by appending the embeddings of each

input sensor

zi = {φ1
i , . . . , φ

K
i }, i = 1...n, 2 k = 1...K.

3 Experimental results

The proposed scheme was experimentally verified by applying it to two tasks. First, we extend

our former results in visual-only lip-reading [4] to audio-visual data. The audio-visual inputs are

integrated using the multisensor fusion scheme given in Section 2 and used for spoken-digit recog-

nition. We show that the fused multi-sensor representation provides better recognition. Second,

we integrate several image cues (texture, RGB values, contours etc.) and show that using them in

conjugation improves the segmentation results.

3.1 Spoken-digit recognition

We start by providing a short description of the experimental setup. We follow the statistical learn-

ing scheme used in [4], where the classifier was constructed in two steps. First we parametrized

the embedding manifold using a large number of unlabeled samples. The embedding is then ex-

tended, using the Geometric Harmonics [4, 29], to a small set of labeled examples to create a set of
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“signatures” in the embedding coordinates. Then, given a test sample, we embed it by extending

the manifold embedding, and find the nearest signature in the embedding space.

To this end, we recorded several grayscale movies depicting the lips of a subject reading a text

in English and retained both the video sequence and the audio track. Each video frame was cropped

into a rectangular of size140× 110 around the lips and was viewed as a point inR140×110. As far

as the audio data was concerned, the sound signal was broken up into overlapping time-windows

centered at the beginning of each video frame. The sampling rate of the video begin 25 frames per

seconds, we chose to form windows of duration equal to 8 ms, that is, equal to the duration of two

video frames. In order to reduce the influence of this splitting, each piece of signal was multiplied

by a bell-shaped function and we then computed the DCT of the result. Last, we considered the

logarithm of the magnitude of this function as being the audio features. The audio and video data

sets therefore contained the same number of points.

The first data set consisted of 6000 video frames (and as many audio windows), corresponding

to the speaker reading a press article. We will refer to this data as “text data”. Next, we asked the

subject to repeat each digit “zero”, “one”, ... , “nine” 40 times. This was used to construct a small

vocabulary of words later employed for training and testing a simple classifier. To each spoken

digit corresponded a sequence of frames in the video data, and a sequence of time-windows for the

audio data. We will refer to this data as “digit data”.

We proceeded as follows for each channel: first, the data points corresponding to the text data

were used to learn the geometry of speech data as we formed a graph with Gaussian weights

exp(
‖xi−xj‖2

ε
) on the edges, for an appropriately chosen scaleε > 0. We then renormalized the

Gaussian weights using the Laplace-Beltrami normalization described in Algorithm 1. In order

to obtain a low-dimensional parametrization we computed the diffusion coordinates on this new

graph. Therefore we ended up with two embeddings, corresponding to either the audio or visual

data.
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The next step involved the digits data. We computed the diffusion coordinates for all of the

samples in the digits data, by applying the Geometric Harmonics scheme [4, 29] and extending the

diffusion coordinates computed on the text data.

In order to train a classifier for digit identification, we randomly selected 20 sequences of each

digit, the remaining sequences being used as a test set. Each digit word can now be viewed as
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Figure 1: The visual data in the first 3 diffusion coordinates. We also represented a trajectory

corresponding to an instance of the word “one”.

a trajectory in the diffusion space and the word recognition problem now amounts to identifying

trajectories in the diffusion space (see Fig. 1). We can now build a classifier based on comparing

a new trajectory to a collection of labeled trajectories in the training set. In order to compare

trajectories in the diffusion space we used the symmetric Hausdorff distance between two setsΓ1

andΓ2, defined as

dH(Γ1, Γ2) = max

{
max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

. (3.1)

Results of this classifier for the visual data only were already presented in [4], where 15 eigen-

vectors were used for the embedding. For the sake of completeness, we re-ran this experiment with
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10 eigenvectors. The results are shown in Table 1. Concerning the audio data, the classification

performance table for a classifier using 10 eigenvectors is presented in Table 2.

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0 0 0.01 0 0 0.08 0 0 0

one 0 0.99 0 0 0 0 0 0 0.01 0

two 0.04 0.01 0.90 0.03 0.02 0 0 0 0 0

three 0 0 0.01 0.94 0 0 0.01 0.02 0.01 0

four 0.01 0 0 0.05 0.93 0 0 0 0 0

five 0 0 0 0 0 0.81 0.01 0.16 0 0.01

six 0.07 0 0 0.01 0 0 0.87 0.03 0.01 0.01

seven 0.03 0 0 0.04 0 0.07 0.05 0.74 0.04 0.02

eight 0 0 0 0 0.02 0.03 0 0.03 0.75 0.16

nine 0 0 0 0 0 0 0 0.04 0.14 0.82

Table 1: Visual only based classifier performance, averaged over 50 random trials and using 10

diffusion coordinates. Each row corresponds the classification distribution of a given digit over

then 10 classes. The data set was embedded in 15 dimensions.

Finally, in order to illustrate the superiority of combining both data channels using our multi-

sensor integration scheme, we present the results obtained when using Algorithm 2 (see Table 3).

More precisely, we appended the first 5 eigenvectors of the audio data with the top 5 eigenvectors

of the video data, and then computed a new graph from this new feature representation of the data.

Finally a classifier was trained and tested on an embedding using 10 eigenvectors of the diffusion

defined on this new graph (see Fig.??).

A summary of all performances is also shown in Table 4. Clearly, our scheme combining

both channels outperforms the classifiers using only one channel. More precisely, it seems to
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“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.75 0 0.04 0 0.01 0.01 0.06 0.08 0.05 0

one 0 0.94 0 0 0 0.03 0 0 0 0.02

two 0.02 0 0.87 0.04 0.01 0 0.01 0 0.03 0.02

three 0.01 0 0.03 0.90 0.02 0.01 0 0 0.01 0.01

four 0.01 0 0 0.02 0.96 0 0 0 0 0.01

five 0.01 0.01 0 0.06 0 0.86 0 0.01 0.01 0.03

six 0 0 0 0 0.01 0 0.93 0.05 0 0

seven 0.05 0 0 0 0 0 0.14 0.81 0.01 0

eight 0.02 0 0.04 0.02 0 0.02 0 0.07 0.80 0.03

nine 0 0.01 0 0.01 0.01 0.04 0 0 0.01 0.92

Table 2: Audio only based classifier performance, averaged over 50 random trials and using 10

diffusion coordinates. Each row corresponds the classification distribution of a given digit over

then 10 classes. The data set was embedded in 15 dimensions.
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get the best of the predictive powers of the audio and visual classifiers. In fact, this is a straight

consequence of the concatenation of the audio and visual diffusion features. For instance, “one” is

very successfully classified using the visual channel. As suggested in [4], typical frame sequences

corresponding to the word “one” contain pictures with an open mouth and no teeth appearing

STEPHANE: ADD A FEW PICTURES ILLUSTRATING THIS POINT . This type of frame

almost never appear in other digit sequences. As a consequence, trajectories for the word “one”

will be well separated from other digit trajectories in the visual diffusion spaceSTEPHANE:

SHOW TRAJECTORY PIC . As far as audio is concerned, the separation is not so important and

there is some amount of confusion with “five” and “nine”. When appending both the audio and

visual representations, the separation remains high.

Notice also that these good results were obtained despite the fact that we used only 5 eigenvec-

tors from each channel in the combined scheme, when 10 eigenvectors were used for either of the

single-channel schemes.

3.2 Image segmentation

The sensor fusion scheme was also applied to multi-cue image segmentation. As features we used

combinations of Interleaving Contours (IC) [30], theL2 metric between RGB values and Gabor

filters based texture descriptors [31]. The Gabor filters used 3 scales and 8 orientations. For each

pixel, the metrics were computed in an area of5 × 5 pixels aroundP . Such that given a feature

f(i, j) computed over the imageI, the distance between the pixelsP (i, j) andP1 (i1, j1) with
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“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.00 0.00

one 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

two 0.00 0.00 0.96 0.01 0.02 0.00 0.00 0.00 0.00 0.00

three 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01

four 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00

five 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.02 0.01

six 0.06 0.00 0.00 0.00 0.00 0.00 0.90 0.04 0.00 0.00

seven 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.93 0.00 0.00

eight 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.95 0.03

nine 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.96

Table 3:Combined: Classification results for the scheme combining both channels, over 50 ran-

dom trials. The combined graph was built from a feature representation of the data based on

appending the first 5 eigenvectors of the audio channel with the first 5 eigenvectors of the video

stream. From this graph, we computed 10 eigenvectors, and we used them for representing the

data.

Channel type “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Audio 0.75 0.94 0.87 0.90 0.96 0.86 0.93 0.81 0.80 0.92

Visual 0.90 0.99 0.90 0.94 0.93 0.81 0.87 0.74 0.75 0.82

Combined 0.90 0.99 0.96 0.99 0.96 0.97 0.90 0.93 0.95 0.96

Table 4: Summary
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respect to the feature is given by

D (P, P1) =




‖f(i, j)− f(i1, j1)‖L2

√
(i− i1)2 + (j − j1)2 ≤ 2

∞ else
. (3.2)

Equation 3.2 is used to sparsify the affinity matrix ofI, otherwise, its eigenvectors computation

become computationally exhaustive for common image sizes. Applying Eq. 3.2 might create

spurious additional parameterizations related to the spatial coordinates. For instance, consider

the vertical and horizontal lines in all of the segmentations in Fig. 2. We refrained from using

the Nystr̈om Method [32], that would have resolved this issue, in order to simplify the testing

procedure and as this phenomenon is well understood.

For every input image, we computed several embeddings and the integrated representation was

computed by the procedure described in Section 2. We emphasize, that for each image, the same

embedding vectors were used both for the single and multi-cue segmentations. In all of the simula-

tions we used 5 eigenvectors from each feature. For all images we present the segmentation results

of applying k-means clustering to each of the original embeddings and the fused coordinates. This

follows the Modified-NCut (MNCut) image segmentation scheme [33]. The scheme was imple-

mented in Matlab and used the built-in kmeans and SVD implementations. Note that the regular

Graph-Laplacian was used for the segmentation and not the density-invariant Laplace-Beltrami.

Figure 2 depicts the segmentation results of theTiger image taken from the Berkeley segmen-

tation database. The images were segmented using the IC and RGB features and the result are

shown Figs. 2a and 2b, respectively. The segmentation results in Fig. 2c show that using the using

fused coordinates provided better results than either the IC or the RGB segmentation results.

Different features were used in Fig. 3. The IC feature is inefficient in analyzing highly-textured

images, as it creates over-segmentation. Thus, we used the RGB and texture features. The texture

based segmentation (Fig. 3a) results in over-segmentation in the lizard’s body, while missing the

cut between the front and background rocks on the left side of the image. Similarly, using the RGB
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Figure 2: Applying the proposed scheme to theTiger image. (a) Segmentation achieved using

the Interleaving contours edge based features. (b) Segmentation results based onL2 differences in

RGB values. (c) Using the fused coordinates we achieve a visually better pleasing result.
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(c) Combined

Figure 3: Applying the proposed scheme to theLizard image. (a) Segmentation achieved using the

texture features. Note the over segmentation in the are behind the Lizard’s head. (b) Segmentation

results based onL2 differences in RGB values. Note the over-segmentation above the Lizard’s leg.

(c) Using the fused coordinates we achieve a visually better pleasing result.
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descriptor also results in over-segmentation. In contrast, the combined segmentation is better eye

pleasing and is able to detect salient multi-cue edges in the image.
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(d) Segmentation results
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sults

Figure 4: Multisensor embedding applied to multiscale image segmentation. The Interleaving

contours edge based feature was applied to each of the image in the first row ((a),(b),(c)). The

second row depicts the corresponding segmentation results. (g) show the improved segmentation

achieved using the fused coordinates.

Finally, we applied the fusion scheme to multi-scale image segmentation. The image was

smoothed by a Gaussian kernel and three resolution scales (shown in Figs. 4a, 4b and 4c) were

created. The IC feature was computed based on each image and the embeddings were fused. We

see that using the proposed scheme resulted in a segmentation that combined the mutual cluster

boundaries in the image, allowing to overlook some of the spurious segmentations, such as the

left eye in Fig. 4a and the throat area in 4b. In [17] the multiscale segmentation was computed

via a computation of an “average cut”. There, the Markov matrices that were computed at each

scale were used, rather than the embedding vectors. In practice, there is no difference between the

multiscale fusion and the fusion of the other descriptors depicted in Figs. 2 and 3. In particular
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one can combine different features and scales directly.

To conclude, by fusing the different features, we were able to achieve better segmentation re-

sults. In essence this approach resembles the biological vision systems by combining different cues

and emphasizing salient multi-features edges. The scheme is flexible and once the embeddings of

each feature are computed, one can combine the embeddings in any possible way without having

to recompute them.

4 Conclusions and future work

In this work we presented a unified multisensor data embedding scheme, based on the diffusion

framework. The fusion was achieved by combining the embeddings of different input channels. We

applied the scheme to audio-visual lip reading and image segmentation that are typical examples

of multisensor pattern recognition and classification. In both cases, the results achieved by using

fused coordinates were superior to those of the single sensor.

We embedded each data source separately and then appended the embeddings to produce the

fused representation. Although this approach is straightforward and allows to combine different

channels easily, it is possible that different channels are correlated. Then, one can find a lower

dimensional representation by considering the unified coordinates as a the features of a signal and

re-embedding them to further reduce the dimensionality.

The image segmentation results, suggest that in certain applications, one can utilize a variety of

features in different resolution scales. Thus, due to the large number of possible input channels, it

might be beneficial to compute adaptive weights that maximize a certain criterion. For instance, in

semi-supervised classification problems, one can train the weights of the combined representation

for optimal classification over a training set by using theAdaBoostalgorithm.
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GEOMETRIC DIFFUSIONS AS A TOOL FOR
HARMONIC ANALYSIS AND STRUCTURE

DEFINITION OF DATA

PART I: DIFFUSION MAPS

R. R. COIFMAN, S. LAFON, A. B. LEE, M. MAGGIONI, B.
NADLER, F. WARNER, AND S.W. ZUCKER

Abstract. We provide a framework for structural
multiscale geometric organization of graphs and sub-
sets of Rn. We use diffusion semigroups to gener-
ate multiscale geometries in order to organize and
represent complex structures. We show that appro-
priately selected eigenfunctions or scaling functions
of Markov matrices, which describe local transitions,
lead to macroscopic descriptions at different scales.
The process of iterating or diffusing the Markov ma-
trix is seen as a generalization of some aspects of
the Newtonian paradigm, in which local infinitesimal
transitions of a system lead to global macroscopic de-
scriptions by integration. In Part I below, we provide
a unified view of ideas from data analysis, machine
learning and numerical analysis. In the second part
of this paper, we augment this approach by intro-
ducing fast order-N algorithms for homogenization
of heterogeneous structures as well as for data repre-
sentation.

1. Introduction

The geometric organization of graphs and data sets in Rn

is a central problem in statistical data analysis. In the con-
tinuous Euclidean setting, tools from harmonic analysis, such
as Fourier decompositions, wavelets and spectral analysis of
pseudo-differential operators have proven highly successful in
many areas such as compression, denoising and density esti-
mation [1, 2]. In this paper, we extend multiscale harmonic
analysis to discrete graphs and subsets of Rn. We use diffu-
sion semigroups to define and generate multiscale geometries
of complex structures. This framework generalizes some as-
pects of the Newtonian paradigm, in which local infinitesimal
transitions of a system lead to global macroscopic descriptions
by integration — the global functions being characterized by
differential equations. We show that appropriately selected
eigenfunctions of Markov matrices (describing local transi-
tions, or affinities in the system) lead to macroscopic repre-
sentations at different scales. In particular, the top eigen-
functions permit a low-dimensional geometric embedding of
the set into Rk, with k ¿ n, so that the ordinary Euclidean
distance in the embedding space measures intrinsic diffusion
metrics on the data. Many of these ideas appear in a variety

of contexts of data analysis, such as spectral graph theory,
manifold learning, nonlinear principal components and kernel
methods. We augment these approaches by showing that the
diffusion distance is a key intrinsic geometric quantity link-
ing spectral theory of the Markov process, Laplace operators,
or kernels, to the corresponding geometry and density of the
data. This opens the door to the application of methods from
numerical analysis and signal processing to the analysis of
functions and transformations of the data.

2. DIFFUSIONS MAPS

The problem of finding meaningful structures and geomet-
ric descriptions of a data set X is often tied to that of di-
mensionality reduction. Among the different techniques de-
veloped, particular attention has been paid to kernel meth-
ods [3]. Their nonlinearity as well as their locality-preserving
property are generally viewed as a major advantage over clas-
sical methods like Principal Component Analysis and classical
Multidimensional Scaling. Several other methods to achieve
dimensional reduction have also emerged from the field of
manifold learning, e.g. Local Linear Embedding [4], Lapla-
cian eigenmaps [5], Hessian eigenmaps [6], Local Tangent
Space Alignment [7]. All these techniques minimize a qua-
dratic distortion measure of the desired coordinates on the
data, naturally leading to the eigenfunctions of Laplace type
operators as minimizers. We extend the scope of application
of these ideas to various tasks, such as regression of empirical
functions, by adjusting the infinitesimal descriptions, and the
description of the long-time asymptotics of stochastic dynam-
ical systems.

The simplest way to introduce our approach is to consider
a set X of normalized data points. Define the “quantized”
correlation matrix C = {cij}, where cij = 1 if (xi ·xj) > 0.95,
and cij = 0 otherwise. We view this matrix as the adja-
cency matrix of a graph on which we define an appropriate
Markov process to start our analysis. A more continuous

kernel version can be defined as cij = e
1−(xi·xj)

ε = e−
‖xi−xj‖2

2ε .
The remarkable fact is that the eigenvectors of this “corrected
correlation” can be much more meaningful in the analysis of
data than the usual principal components as they relate to
diffusion and inference on the data.

As an illustration of the geometric approach, suppose that
the data points are uniformly distributed on a manifold X.
Then it is known from spectral graph theory [8] that if W =
{wij} is any symmetric positive semi-definite matrix, with
non-negative entries, then the minimization of

Q(f) =
∑

i,j

wij(fi − fj)2,

1
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where f is a function on the data set X with the additional
constraint of unit norm, is equivalent to finding the eigen-
vectors of D− 1

2 WD
1
2 , where D = {dij} is a diagonal ma-

trix with diagonal entry dii equal to the sum of the elements
of W along the ith row. Belkin et al [5] suggest the choice

wij = e−
‖xi−xj‖2

ε , in which case the distortion Q clearly pe-
nalizes pairs of points that are very close, forcing them to be
mapped to very close values by f . Likewise, pairs of points
that are far away from each other play no role in this min-
imization. The first few eigenfunctions {φk} are then used
to map the data in a nonlinear way so that the closeness of
points is preserved. We will provide a principled geometric
approach for the selection of eigenfunction coordinates.

This general framework based upon diffusion processes leads
to efficient multiscale analysis of data sets for which we have a
Heisenberg localization principle relating localization in data
to localization in spectrum. We also show that spectral prop-
erties can be employed to embed the data into a Euclidean
space via a diffusion map. In this space, the data points are
reorganized in such a way that the Euclidean distance corre-
sponds to a diffusion metric. The case of submanifolds of Rn

is studied in greater detail and we show how to define different
kinds of diffusions in order to recover the intrinsic geometric
structure, separating geometry from statistics. More details
on the topics covered in this section can be found in [9]. We
also propose an additional diffusion map based on a specific
anisotropic kernel whose eigenfunctions capture the long-time
asymptotics of data sampled from a stochastic dynamical sys-
tem [10].

2.1. Construction of the diffusion map. From the above
discussion, the data points can be thought of as being the
nodes of a graph whose weight function k(x, y) (also referred
to as “kernel” or “affinity function”) satisfies the following
properties:

• k is symmetric: k(x, y) = k(y, x),
• k is positivity preserving: for all x and y in X, k(x, y) ≥

0,
• k is positive semi-definite: for all real-valued bounded

functions f defined on X,
∫

X

∫

X

k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0 ,

where µ is a probability measure on X.
The construction of a diffusion process on the graph is a clas-
sical topic in spectral graph theory (weighted graph Laplacian
normalization, see [8]), and the procedure consists in renor-
malizing the kernel k(x, y) as follows: for all x ∈ X,

let v(x) =
∫

X

k(x, y)dµ(y) ,

and set

a(x, y) =
k(x, y)
v(x)

.

Notice that we have the following conservation property:

(2.1)
∫

X

a(x, y)dµ(y) = 1 ,

therefore, the quantity a(x, y) can be viewed as the probabil-
ity for a random walker on X to make a step from x to y.
Now we naturally define the diffusion operator

Af(x) =
∫

X

a(x, y)f(y)dµ(y) .

As is well known in spectral graph theory [8], there is a spec-
tral theory for this Markov chain, and if Ã is the integral
operator defined on L2(X) with the kernel

(2.2) ã(x, y) = a(x, y)

√
v(x)
v(y)

then it can be verified that Ã is a symmetric operator. Con-
sequently, we have the following spectral decomposition

(2.3) ã(x, y) =
∑

i≥0

λ2
i φi(x)φi(y) ,

where λ0 = 1 ≥ λ1 ≥ λ2 ≥ .... Let ã(m)(x, y) be the kernel of
Ãm. Then we have

(2.4) ã(m)(x, y) =
∑

i≥0

λ2m
i φi(x)φi(y) .

Last we introduce the family of diffusion maps {Φm} by

Φm(x) =




λm
0 φ0(x)

λm
1 φ1(x)

...


 ,

and the family of diffusion distances {Dm} defined by

D2
m(x, y) = ã(m)(x, x) + ã(m)(y, y)− 2ã(m)(x, y) .

The quantity a(x, y), which is related to ã(x, y) according
to equation (2.2), can be interpreted as the transition prob-
ability of a diffusion process, while a(m)(x, y) represents the
probability of transition from x to y in m steps. To this diffu-
sion process corresponds the distance Dm(x, y) which defines
a metric on the data that measures the rate of connectivity
of the points x and y by paths of length m in the data, and
in particular, it is small if there are a large number of paths
connecting x and y. Note that, unlike the geodesic distance,
this metric is robust to perturbations on the data.

The dual point of view is that of the analysis of functions
defined on the data. The kernel ã(m)(x, ·) can be viewed as
a bump function centered at x, that becomes wider as m
increases. The distance D2m(x, y) is also a distance between
the two bumps ã(m)(x, ·) and ã(m)(y, ·):

D2
2m(x, y) =

∫

X

|ã(m)(x, z)− ã(m)(y, z)|2dz .

The eigenfunctions have the classical interpretation of an or-
thonormal basis, and their frequency content can be related to
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the spectrum of operator A in what constitutes a generalized
Heisenberg principle. The key observation is that, for many
practical examples, the numerical rank of the operator A(m)

decays rapidly as seen from equation (2.4) or from Figure 1.
More precisely, since 0 ≤ λi ≤ λ0 = 1, the kernel ã(m)(x, y),
and therefore the distance Dm(x, y), can be computed to high
accuracy with only a few terms in the sum of (2.4), that is
to say, by only retaining the eigenfunctions φi for which λ2m

i

exceeds a certain precision threshold. Therefore, the rows
(the so-called bumps) of Am span a space of lower numeri-
cal dimension, and the set of columns can be downsampled.
Furthermore, to generate this space, one just needs the top
eigenfunctions, as prescribed in equation (2.4). Consequently,
by a change of basis, eigenfunctions corresponding to eigen-
values at the beginning of the spectrum have low frequencies,
and the number of oscillations increase as one moves further
down in the spectrum.

The link between diffusion maps and distances can be sum-
marized by the spectral identity

‖Φm(x)− Φm(y)‖2 =
∑

j≥0

λ2m
j (φj(x)− φj(y))2 = D2

m(x, y) ,

which means that the diffusion map Φm embeds the data into
a Euclidean space in which the Euclidean distance is equal to
the diffusion distance Dm. Moreover, the diffusion distance
can be accurately approximated by retaining only the terms
for which λ2m

j remains numerically significant: the embedding

x 7−→ x̆ = (λm
0 φ0(x), λm

1 φ1(x), ..., λm
j0φj0(x))

satisfies

D2
m(x, y) =

j0−1∑

j=0

λ2m
j (φj(x)− φj(y))2

(
1 +O(e−αm)

)

= ‖x̆− y̆‖2(1 +O(e−αm)) .

Therefore there exists an m0 such that for all m ≥ m0, the
diffusion map with the first j0 eigenfunctions embeds the data
into Rj0 in an approximately isometric fashion, with respect
to the diffusion distance Dm.

2.2. The heat diffusion map on Riemannian subman-
ifolds. Suppose that the data set X is approximately lying
along a submanifold M ⊂ Rn, with a density p(x) (not nec-
essarily uniform on M). This kind of situation arises in
many applications ranging from hyperspectral imagery to im-
age processing to vision. For instance, in the latter field, a
model for edges can be generated by considering pixel neigh-
borhoods whose variability is governed by a few parameters
[11, 12].

We consider isotropic kernels, i.e., kernels of the form

kε(x, y) = h

(‖x− y‖2
ε

)
.

(a) (b)

Figure 2. A dumbbell (a) is embedded us-
ing the first 3 eigenfunctions (b). Because
of the bottleneck, the two lobes are pushed
away from each other. Observe also that in
the embedding space, point A is closer to the
handle (point B) than any point on the edge
(like point C), as there are many more short
paths joining A and B than A and C.

In [5], Belkin et al suggest to take kε(x, y) = e−
‖x−y‖2

ε and
to apply the weighted graph Laplacian normalization proce-
dure described in the previous section. They show that if the
density of points is uniform, then as ε → 0, one is able to
approximate the Laplace-Beltrami operator ∆ on M.

However when the density p is not uniform, as is often the
case, the limit operator is conjugate to an elliptic Schrödinger-
type operator having the more general form ∆ + Q, where
Q(x) = ∆p(x)

p(x) is a potential term capturing the influence of the
non-uniform density. By writing the non-uniform density in
a Boltzmann form, p(x) = e−U(x), the infinitesimal operator
can be expressed as

(2.5) ∆φ + (‖∇U‖2 −∆U)φ .

This generator corresponds to the forward diffusion operator
and is the adjoint of the infinitesimal generator of the back-
ward operator, given by

(2.6) ∆φ− 2∇φ · ∇U .

As is well known from quantum physics, for a double well po-
tential U , corresponding to two separated clusters, the first
non-trivial eigenfunction of this operator discriminates be-
tween the two wells. This result reinforces the use of the
standard graph Laplacian for computing an approximation
to the normalized cut problem, as described in [13], and more
generally for the use of the first few eigenvectors for spectral
clustering, as suggested by Weiss [14].

In order to capture the geometry of a given manifold, re-
gardless of the density, we propose a different normaliza-
tion that asymptotically recovers the eigenfunctions of the
Laplace-Beltrami (heat) operator on the manifold. For any
rotation-invariant kernel kε(x, y) = h(‖x−y‖2/ε), we consider
the normalization described in the box below. The operator
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Figure 1. Left: spectra of some powers of A. Middle and right: consider a mixture of two materials with
different heat conductivity. The original geometry (middle) is mapped as a “butterfly” set, in which the
red (higher conductivity) and blue phases are organized according to the diffusion they generate: the cord
length between two points in the diffusion space measures the quantity of heat that can travel between these
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Aε can be used to define a discrete approximate Laplace op-
erator as follows:

∆ε =
I −Aε

ε
,

and it can be verified that ∆ε = ∆0 + ε
1
2 Rε, where ∆0 is a

multiple of the Laplace-Beltrami operator ∆ on M, and Rε

is bounded on a fixed space of bandlimited functions. From
this, we can deduce the following result:

Theorem 2.1. Let t > 0 be a fixed number, then as ε → 0,

A
t
ε
ε = (I − ε∆ε)

t
ε = (I − ε∆0)

t
ε +O(ε

1
2 ) = e−t∆0 +O(ε

1
2 ) ,

and the kernel of A
t
ε
ε is given as

a
( t

ε )
ε (x, y) =

∑

j≥0

λ
2t
ε

j φ
(ε)
j (x)φ(ε)

j (y)

=
∑

j≥0

e−ν2
j tφj(x)φj(y) +O(ε

1
2 )

= ht(x, y) +O(ε
1
2 ) ,

where {ν2
j } and {φj} are the eigenvalues and eigenfunctions

of the limiting Laplace operator, ht(x, y) is the heat diffusion
kernel at time t and all estimates are relative to any fixed
space of bandlimited functions.

Approximation of the Laplace-Beltrami diffusion
kernel

1) Let pε(x) =
∫

X
kε(x, y)p(y)dy ,

and form the new kernel k̂ε(x, y) = kε(x,y)
pε(x)pε(y) .

2) Apply the weighted graph Laplacian
normalization to this kernel by defining
vε(x) =

∫
X

k̂ε(x, y)p(y)dy ,

and by setting aε(x, y) = k̂ε(x,y)
vε(x) .

Then the operator Aεf(x) =
∫

X
aε(x, y)f(y)p(y)dy is an

approximation of the Laplace-Beltrami diffusion kernel
at time ε.

For simplicity, we assume that on the compact manifold M,
the data points are relatively densely sampled (each ball of
radius

√
ε contains enough sample points so that integrals can

approximated by discrete sums). Moreover, if the data only
covers a subdomain of M with nonempty boundary, then ∆0

needs to be interpreted as acting with Neumann boundary
conditions. As in the previous section, one can compute heat
diffusion distances and the corresponding embedding. More-
over, any closed rectifiable curve can be embedded as a circle
on which the density of points is preserved: we have thus sep-
arated the geometry of the set from the distribution of the
points (see Figure 3 for an example).

2.3. Anisotropic diffusion and stochastic differential
equations. So far we have considered the analysis of general
datasets by diffusion maps, without considering the source of
the data. One important case of interest is when the data
x is sampled from a stochastic dynamical system. Consider
therefore data sampled from a system x(t) ∈ Rn whose time
evolution is described by the following Langevin equation

(2.7) ẋ = −∇U(x) +
√

2ẇ

where U is the free energy and w(t) is the standard n-dimensional
Brownian motion. Let p(y, t|x, s) denote the transition prob-
ability of finding the system at location y at time t, given an
initial location x at time s. Then, in terms of the variables
{y, t}, p satisfies the forward Fokker-Planck equation (FPE),
for t > s,

(2.8)
∂p

∂t
= ∇ · (∇p + p∇U(y))

while in terms of the variables {x, s}, the transition probabil-
ity satisfies the backward equation

(2.9) −∂p

∂s
= ∆p−∇p · ∇U(x)
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Figure 3. Original spiral curve (a) and the density of points on it (b), embedding obtained from the
normalized graph Laplacian (c) and embedding from the Laplace-Beltrami approximation (d).

As time t → ∞, the solution of the forward FPE converges
to the steady state Boltzmann density

(2.10) p(x) =
e−U(x)

Z

where the partition function Z is the appropriate normaliza-
tion constant.

The general solution to the FPE can be written in terms
of an eigenfunction expansion

(2.11) p(x, t) =
∞∑

j=0

aje
−λjtφj(x)

where λj are the eigenvalues of the Fokker-Planck operator,
with λ0 = 1 > λ1 ≥ λ2 ≥ . . ., and with φj(x) the correspond-
ing eigenfunctions. The coefficients aj depend on the initial
conditions. A similar expansion exists for the backward equa-
tion, with the eigenfunctions of the backward operator given
by ψj(x) = eU(x)φj(x).

As can be seen from equation (2.11), the long time asymp-
totics of the solution is governed only by the first few eigen-
functions of the Fokker-Planck operator. While in low dimen-
sions, e.g. n ≤ 3, approximations to these eigenfunctions can
be computed via numerical solutions of the partial differential
equation, in general, this is infeasible in high dimensions. On
the other hand, simulations of trajectories according to the
Langevin equation (2.7) are easily performed. An interesting
question, then, is whether it is possible to obtain approxi-
mations to these first few eigenfunctions from (large enough)
data sampled from these trajectories.

In the previous section we saw that the infinitesimal gen-
erator of the normalized graph Laplacian construction corre-
sponds to a Fokker-Planck operator with a potential 2U(x),
see eq. (2.6). Therefore, in general, there is no direct connec-
tion between the eigenvalues and eigenfunctions of the nor-
malized graph Laplacian and those of the underlying Fokker-
Planck operator (2.8). However, it is possible to construct
a different normalization that yields infinitesimal generators
corresponding to the potential U(x) without the additional
factor of two.

Consider the following anisotropic kernel,

(2.12) k̃ε(x, y) =
kε(x, y)√
pε(x)pε(y)

A similar analysis to that of the previous section shows that
the normalized graph Laplacian construction that corresponds
to this kernel gives in the asymptotic limit the correct Fokker-
Planck operator, e.g., with the potential U(x).

Since the Euclidean distance in the diffusion map space
corresponds to diffusion distance in the feature space, the
first few eigenvectors corresponding to the anisotropic kernel
(2.12) capture the long-time asymptotic behavior of the sto-
chastic system (2.7). Therefore, the diffusion map can be seen
as an empirical method for homogenization (see [10] for more
details). These variables are the right observables with which
to implement the equation-free complex/multiscale computa-
tions of Kevrekidis et al (see [15] and [16]).

2.4. One-parameter family of diffusion maps. In the
previous sections we showed three different constructions of
Markov chains on a discrete data-set, that asymptotically
recover either the Laplace-Beltrami operator on the mani-
fold, or the backward Fokker-Planck operator with potential
2U(x) for the normalized graph Laplacian, or U(x) for the
anisotropic diffusion kernel.

In fact, these three normalizations can be seen as specific
cases of a one-parameter family of different diffusion maps,
based on the kernel

(2.13) k(α)
ε (x, y) =

kε(x, y)
pα

ε (x)pα
ε (y)

for some α > 0.
It can be shown [9] that the forward infinitesimal operator

generated by this diffusion is

(2.14) H(α)
f φ = ∆φ−

(
e(1−α)U∆e−(1−α)U

)
φ

One can easily see that the interesting cases are: i) α = 0,
corresponding to the classical normalized graph Laplacian,
ii) α = 1, yielding the Laplace-Beltrami operator, and iii)
α = 1/2 yielding the backward Fokker-Planck operator.
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Figure 4. Left: the original function f on
the unit square. Right: the first non-trivial
eigenfunction. On this plot, the colors corre-
sponds to the values of f .

Therefore, while the graph Laplacian based on a kernel
with α = 1 captures the geometry of the data, with the den-
sity e−U playing absolutely no role, the other normalizations
take into account also the density of the points on the mani-
fold.

3. Directed diffusion and learning by diffusion

It follows from the previous section that the embedding
that one obtains depends heavily on the choice of a diffusion
kernel. In some cases, one is interested in constructing diffu-
sion kernels which are data or task driven. As an example,
consider an empirical function F (x) on the data. We would
like to find a coordinate system in which the first coordinate
has the same level lines as the empirical function F . For that
purpose, we replace the Euclidean distance in the Gaussian
kernel by the anisotropic distance

D2
ε(x, y) = d2(x, y)/ε + |F (x)− F (y)|2/ε2

The corresponding limit of A
t/ε
ε is a diffusion along the level

surfaces of F from which it follows that the first nonconstant
eigenfunction of Aε has to be constant on level surfaces. This
is illustrated in Figure 4, where the graph represents the func-
tion F and the colors correspond to the values of the first
non-trivial eigenfunction. In particular, observe that the level
lines of this eigenfunction are the integral curves of the field
orthogonal to the gradient of F . This is clear since we forced
the diffusion to follow this field at a much faster rate, in ef-
fect integrating that field. It also follows that any differential
equation can be integrated numerically by a non-isotropic dif-
fusion in which the direction of propagation is faster along the
field specified by the equation.

We now apply this approach to the construction of empir-
ical models for statistical learning. Assume that a data set
has been generated by a process whose local statistical prop-
erties vary from location to location. Around each point x,
we view all neighboring data points as having been generated
by a local diffusion whose probability density is estimated by

px(y) = cx exp(−qx(x− y)) where qx is a quadratic form ob-
tained empirically by PCA from the data in a small neighbor-
hood of x . We then use the kernel a(x, z) =

∫
px(y)pz(y)dy

to model the diffusion. Note that the distance defined by
this kernel is

(∫ |px(y)− pz(y)|2dy
)1/2 which can be viewed

as the natural distance on the “statistical tangent space” at
every point in the data. If labels are available, the infor-
mation about the labels can be incorporated by, for example,
locally warping the metric so that the diffusion starting in one
class stays in the class without leaking to other classes. This
could be obtained by using local discriminant analysis (e.g.
linear, quadratic or Fisher discriminant analysis) to build a
local metric whose fast directions are parallel to the boundary
between classes and whose slow directions are transversal to
the classes (see e.g. [1]).

In data classification, geometric diffusion provides a pow-
erful tool to identify arbitrarily shaped clusters with partially
labelled data. Suppose, for example, we are given a data set
X with N points from C different classes. Assume our task
is to learn a function L : X → {1, . . . , C} for every point in
X but we are given the labels of only s << N points in X.
If we cannot infer the geometry of the data from the label
points only, many parametric methods (e.g. Gaussian classi-
fiers) and non-parametric techniques (e.g. nearest neighbors)
lead to poor results. In Figure 3, we illustrate this with an ex-
ample. Here we have a hyperspectral image of pathology tis-
sue. Each pixel (x, y) in the image is associated with a vector
{I(x, y)}λ that reflects the material’s spectral characteristics
at different wavelengths λ. We are given a partially labelled
set for three different tissue classes (marked with blue, green,
and pink in 3a) and are asked to classify all pixels in the im-
age using only spectral, as opposed to, spatial information.
Both Gaussian classifiers and nearest-neighbor classifiers (see
3b) perform poorly in this case as there is a gradual change
in both shading and chemical composition in the vertical di-
rection of the tissue sample.

The diffusion framework, however, provides an alternative
classification scheme that links points together by a Markov
random walk (see also [17] for a discussion): let χi be the
L1-normalized characteristic function of the initially labelled
set from class i. At a given time t, we can interpret the
diffused label functions (Atχi)i as the posterior probabilities
of the points belonging to class i. Choose a time τ when the
margin between the classes is maximized, and then define the
label of a point x ∈ X as the maximum a posteriori estimate
L(x; τ) = argmaxiA

τχi. Figure 3c shows the classification
of the pathology sample using the above scheme. The latter
result agrees significantly better with a specialist’s view of
correct tissue classification.

In many practical situations, the user may want to refine
the classification of points that occur near the boundaries
between classes in state space. One option is to use an itera-
tive scheme, where the user provides new labelled data where
needed and then restarts the diffusion with the new enlarged
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(a) (b) (c)

Figure 5. a: Pathology slice with partially labelled data; the 3 tissue classes are marked with blue, green
and pink. b: Tissue classification from spectra using 1-nearest neighbors. c: Tissue classification from
spectra using geometric diffusion.

training set. However, if the total data set X is very large, an
alternative, more efficient, scheme is to define a modified ker-
nel that incorporates both previous classification results and
new information provided by the user: for example, assign to
each point a score si(x) ∈ [0, 1] that reflects the probability
that a point x belongs to class i. Then use these scores to warp
the diffusion so that we have a set of class-specific diffusion
kernels {Ãi}i that slow down diffusion between points with
different label probabilities. Choose, for example, in each new
iteration, weights according to k̃i(x, y) = k(x, y)si(x)si(y)
where si = Aτχi are the label posteriors from the previous
diffusion, and renormalize the kernel to be a Markov matrix.
If the user provides a series of consistent labelled examples,
the classification will speed up in each new iteration and the
diffusion will eventually occur only within disjoint sets of sam-
ples with the same labels.

4. Summary

In this paper, we presented a general framework for struc-
tural multiscale geometric organization of graphs and subsets
of Rn. We introduced a family of diffusion maps that allow the
exploration of both the geometry, the statistics and functions
of the data. Diffusion maps provide a natural low-dimensional
embedding of high-dimensional data that is suited for subse-
quent tasks such as visualization, clustering, and regression.
In part II of this paper, we introduce multiscale methods that
allow fast computation of functions of diffusion operators on
the data. We also present a scheme for extending empirical
functions.
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GEOMETRIC DIFFUSIONS AS A TOOL FOR
HARMONIC ANALYSIS AND STRUCTURE

DEFINITION OF DATA

PART II: MULTISCALE METHODS

R.R.Coifman 1, S.Lafon 1, A.B.Lee 1, M.Maggioni1,
B.Nadler 1, F.J.Warner 1, S.W.Zucker 2

Abstract. In the companion paper a framework for struc-
tural multiscale geometric organization of subsets of Rn and
of graphs was introduced. Here diffusion semigroups are used
to generate multiscale analyses in order to organize and repre-
sent complex structures. We emphasize the multiscale nature
of these problems, and we build scaling functions of Markov
matrices (describing local transitions) that lead to macro-
scopic descriptions at different scales. The process of iterating
or diffusing the Markov matrix is seen as a generalization of
some aspects of the Newtonian paradigm, in which local in-
finitesimal transitions of a system lead to global macroscopic
descriptions by integration. This part deals with the con-
struction of fast order N algorithms for data representation
and for homogenization of heterogeneous structures.

1. Introduction

In the companion paper [1] it is shown that the eigenfunc-
tions of a diffusion operator A can be used to perform global
analysis of the set and of functions on a set. Here we present
a construction of a multiresolution analysis of functions on
the set related to the diffusion operator A. This allows to
perform a local analysis at different diffusion scales.

This is motivated by the fact that in many situations one is
interested not in the data itself, but in functions on the data,
and in general these functions exhibit different behaviour at
different scales. This is the case in many problems in learn-
ing, in analysis on graphs, in dynamical systems etc... The
analysis through the eigenfunctions of Laplacian considered in
[1] are global and are affected by global characteristics of the
space. It can be thought of as global Fourier analysis. The
multiscale analysis proposed here is in the spirit of wavelet
analysis.

We refer the reader to [2, 3, 4] for further details and ap-
plications of this construction, as well as a discussion of the
many relationships between this work and the work of many

1Department of Mathematics, Yale University, 10 Hillhouse Ave, New
Haven, CT, 06510, U.S.A., +1-(203)-432-1278

2Department of Computer Science, Yale University, 51 Prospect St.,
New Haven, CT, 06510, U.S.A, +1-(203)-432-1278

other researchers in several branches of mathematics and ap-
plied mathematics. Here we would like to at least mention
the relationship with Fast Multipole Methods [5, 6], Algebraic
Multigrid [7], lifting [8, 9].

2. Multiscale Analysis of Diffusion

2.1. Construction of the Multiresolution Analysis. Sup-
pose we are given a self-adjoint diffusion operator A as in [1]
acting on L2 of a metric measure space (X, d, µ). We interpret
A as a dilation operator, and use it to define a multiresolution
analysis. It is natural to discretize the semigroup {At}t≥0 of
the powers of A at a logarithmic scale, for example at the
times

(2.1) tj = 1 + 2 + 22 + ... + 2j = 2j+1 − 1

For a fixed ε ∈ (0, 1), we define the approximation spaces by

(2.2) Vj = < {φi : λ
tj

i ≥ ε} >

where the φi’s are the eigenvectors of A, ordered by decreasing
eigenvalue. We will denote by Pj the orthogonal projection
onto Vj . The set of subspaces {Vj}j∈Z is a multiresolution
analysis in the sense that it satisfies the following properties:

(i) limj→−∞ Vj = L2(X, µ),
limj→+∞ Vj = < {φi : λi = 1} >.

(ii) Vj+1 ⊆ Vj for every j ∈ Z.
(iii) {φi : λ

tj

i ≥ ε} is an orthonormal basis for Vj .
We can also define the detail subspaces Wj as the orthog-

onal complement of Vj in Vj+1, so that we have the familiar
relation between approximation and detail subspaces as in the
classical wavelet multiresolution constructions:

Vj+1 = Vj ⊕⊥ Wj .

This is very much in the spirit of a Littlewood-Paley de-
composition induced by the diffusion semigroup [10]. How-
ever, in each subspace Vj and Wj we have the orthonormal
basis of eigenfunctions, but we would like to replace them with
localized orthonormal bases of scaling functions as in wavelet
theory. Generalized Heisenberg principles (see also section 4)
put a lower bound on how much localization can be achieved
at each scale j, depending on the spectrum of the operator
A and on the space on which it acts. We would like to have
basis elements as much localized as allowed by the Heisenberg
principle at each scale, and spanning (approximately) Vj . We
do all this while avoiding computation of the eigenfunctions.

We start by fixing a precision ε > 0, and assume that
A is represented on the basis Φ0 = {δk}k∈X . We consider
the columns of A, which can be interpreted as the set of
functions Φ̃1 = {Aδk}k∈X on X. We use a local multiscale
Gram-Schmidt procedure, described below, to carefully but
efficiently orthonormalize these columns into a basis Φ1 =
{ϕ1,k}k∈X1 (X1 is defined as this index set) for the range of

1
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A up to precision ε. This is a linear transformation we rep-
resent by a matrix G0. This yields a subspace that is ε-close
to V1. Essentially Φ1 is a basis for a subspace which is ε-close
to the range of A, the basis elements that are well-localized
and orthogonal. Obviously |X1| ≤ |X| but the inequality may
already be strict since part of the range of A may be below
the precision ε. Whether this is the case or not, we have then
a map M0 from X to X1, which is the composition of A with
the orthonormalization by G0. We can also represent A in
the basis Φ1: we denote this matrix by A1 and compute A2

1.
See the diagram in Figure 1.

We now proceed by looking at the columns of A2
1, which

are Φ̃2 = {A2
1δk}k∈X1 = {A2ϕ1,k}k∈X1 up to precision ε, by

unravelling the bases on which the various elements are repre-
sented. Again we can apply a local Gram-Schmidt procedure
to orthonormalize this set: this yields a matrix G1 and an
orthonormal basis Φ2 = {ϕ2,k}k∈X2 for the range of A2

1 up
to precision ε, and hence for the range of A3

0 up to precision
2ε. Moreover, depending on the decay of the spectrum of A,
|X2| << |X1|. The matrix M1 which is the composition of
G1 with A2

1 is then of size |X2| × |X1|, and A2
2 = M1M

T
1 is a

representation of A4 acting on Φ2.
After j steps in this fashion, we will have a representation

of A1+2+22+···+2j

= A2j+1−1 onto a basis Φj = {ϕj,k}k∈Xj ,
that spans a subspace which is jε-close to Vj . Depending
on the decay of the spectrum of A, we expect |Xj | << |X|,
in fact in the ideal situation3 the spectrum of A decays fast
enough so that there exists γ < 1 such that |Xj | < γ2j+1−1|X|.
This subspace is spanned by “bump” functions at scale j, as
defined by the corresponding power of the diffusion operator
A. The “centers” of these bump functions can be identified
with Xj , which we can think of Xj as a coarser version of X.
The basis Φj is naturally identified with the set of Dirac δ-
functions on Xj , however can extend these functions, defined
on the “compressed” graph Xj to the whole initial graph X
by writing

(2.3)
ϕj,k(x) = Mj−1ϕj−1,k(x) , x ∈ Xj−1

= Mj−1Mj−2 · . . . ·M0 ϕ0,k(x) , x ∈ X0 .

Since every function in Φ0 is defined on X, so is every function
in Φj . Hence any function on the compressed space Xj can
be extended naturally to the whole X. In particular, one
can compute low-frequency eigenfunctions on Xj , and then
extend them to the whole X. This is of course completely
analogous to the standard construction of scaling functions in
the Euclidean setting [11, 5, 12].Observe that each point in Xj

can be considered as a “local aggregation” of points in Xj−1,
which is completely dictated by the action of the operator A
on functions on X: A itself is dictating the geometry with
respect to which it should be analyzed, compressed, applied
to any vector.

3By Weyl’s Theorem on the distribution function of the spectrum
of the Laplace-Beltrami operator, this is the case when A is an accu-
rate enough discretization of the Laplace-Beltrami on a smooth compact
Riemannian manifold with smooth boundary.

Figure 1. Diagram for downsampling, or-
thogonalization and operator compression.

We have thus computed and efficiently represented the
powers A2j

, for j > 0, which describe the behaviour of the dif-
fusion at different time scales. This applies to the solution of
discretized of partial differential equations, of Markov chains,
and in learning and related classification problems.

2.2. Wavelet transforms and Green’s function. The con-
struction immediately suggests an associated fast scaling func-
tion transform: suppose we are given f on X and want to
compute < f, ϕj,k > for all scales j and corresponding “trans-
lations” k. Being given f is equivalent to saying we are given
(< f, ϕ0,k >)k∈X . Then we can compute (< f, ϕ1,k >)k∈X1 =
M0(< f, ϕ0,k >)k∈X , and so on for all scales. The matrices
Mj are sparse (since Aj and Gj are), so this computation is
fast. This generalizes the classical scaling function transform.
We will see later that wavelets can be constructed as well and
a fast wavelet transform is possible.

In the same way, any power of A can be applied fast to a
function f . In particular the Green’s function (I − A)−1 can
be applied fast to any function: since

(I −A)−1f =
+∞∑

k=1

Akf ,

if we let SK =
∑2K

k=1 Ak we see that

SK+1 = SK + A2K

SK =
K∏

k=0

(
I + A2k

)
f ,

and each term of the product can be applied fast to f .
The construction of the multiscale bases can be done in

time O(n log2 n), where n = |X|, if the spectrum of A has
fast enough decay. The decomposition of a function f onto
the scaling functions and wavelets we construct can be done
in the same time, and so does the computation of (I−A)−1f .

2.3. The orthogonalization process. We sketch here how
the orthogonalization works: for details refer to [3, 2]. Sup-
pose we start from a δ-local basis Φ = {ϕx}x∈T (in our case,
ϕx is going to be a bump Alδx). We greedily build a first
layer of basis functions Φ0 = {ϕ̃0,xk

}xk∈K0 , K0 ⊆ T as fol-
lows. We let ϕ0,x0 be a basis function with greatest L2-norm.
Then we let ϕ0,x1 be a basis function with biggest L2-norm
among the basis functions with support disjoint from the sup-
port of ϕ0,x0 but not farther than δ from it. By induction,
after ϕ0,x0 , . . . , ϕ0,xl

have been chosen, we let ϕ0,xl+1 be a
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scaling function with largest L2-norm among those having a
support which does not intersect any of the supports of the
basis functions already constructed, but is not farther than δ
from the closest such support. We stop when no such choice
can be made. One can think of K0 roughly as a 2δ lattice.

At this point Φ0 in general spans a subspace much smaller
than the one spanned by Φ. We construct a second layer
Φ1 = {ϕ̃1,xk

}xk∈K1 , K1 ⊆ T \ K0 as follows. Orthogonalize
each {ϕx}x∈T \K0 to the functions {ϕ0,xk

}xk∈K0 . Observe that
since the support of ϕx is small, this orthogonalization is local,
in the sense that each ϕx needs to be orthogonalized only to
the few ϕ′0,xk

s that have an intersecting support. In this way
we get a set Φ̃1, orthogonal to Φ0 but not orthogonal itself.
We orthonormalize it exactly as we did to get Φ0 from Φ. We
proceed by building as many layers as necessary to span the
whole space < Φ > (up to the specified precision ε).

2.4. Wavelets. We would like to construct bases {ψj,k}k for
the spaces Wj , j ≥ 1, such that Vj⊕⊥Wj = Vj+1. To achieve
this, after having built {ϕj,k}k∈Kj and {ϕj+1,k}k∈Kj+1 , we can
apply our modified Gram-Schmidt procedure with geometric
pivoting to the set of functions

{(Pj − Pj+1)ϕj,k}k∈Kj ,

which will yield an orthonormal basis of wavelets for the
orthogonal complement of Vj+1 in Vj . Observe that each
wavelet is a result of an orthogonalization process which is
local, so the computation is again fast. To achieve numerical
stability we orthogonalize at each step the remaining ϕj+1,k’s
to both the wavelets built so far and ϕj,k. Wavelet subspaces
can be recursively split further to obtain diffusion wavelet
packets [4], which allow the application of the classical fast
algorithms [13] for denoising [14], compression [15] and dis-
crimination [16].

3. Examples and applications

Example 3.1 (Multiresolution diffusion on the homogeneous
circle). To compare with classical constructions of wavelets,
we consider the unit circle, sampled at 256 points, and the
classical isotropic heat diffusion on it. The initial orthonormal
basis Φ0 is given by the set of δ-functions at each point, and we
build the diffusion wavelets at all scales, which clearly relate
to splines and multiwavelets. The spectrum of the diffusion
operator does not decay very fast. See Figure 2 and 3.

Example 3.2 (Dumbbell). We consider a dumbbell-shaped
manifold, sampled at 1400 points, and the diffusion associated
to the (discretized) Laplace-Beltrami operator as discussed in
[1]. See Figure 4 for the plots of some scaling functions and
wavelets: they exhibit the expected locality and multiscale
features, dependent on the intrinsic geometry of the mani-
fold.

Example 3.3 (Multiresolution diffusion on a nonhomogenous
circle). We can apply the construction of diffusion wavelets to
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Figure 2. Diffusion Multiresolution Analysis
on the circle. We consider 256 points on the unit
circle, starting with ϕ0,k = δk and with the stan-
dard diffusion. We plot several scaling functions
in each approximation space Vj .
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Figure 3. Diffusion Multiresolution Analysis
on the circle: we plot the compressed matri-
ces representing powers of the diffusion operator,
in white are the entries above working precision
(here set to 10−8). Notice the shrinking of the
size of the matrices which are being compressed
at the different scales.

non-isotropic diffusions arising from partial differential equa-
tions, to tackle problems of homogenization in a natural way.
The literature on homogenization is vast, see e.g. [17, 18, 19,
20, 21] and references therein.

Our definition of scales which is driven by the differen-
tial operator, which in general results in highly nonuniform
and nonhomogeneous spatial and spectral scales, and in cor-
responding coarse equations of the system, which have high
precision.
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4 GEOMETRIC DIFFUSIONS: MULTISCALE METHODS

Figure 4. Some diffusion scaling functions
and wavelets at different scales on a dumbbell-
shaped manifold sampled at 1400 points.

Figure 5. Multiresolution Diffusion on a cir-
cular medium with non-constant diffusion co-
efficient. Top: several scaling functions and
wavelets in different approximation subspaces
Vj : notice that scaling functions at the same dif-
fusion scale exhibit different spatial localization,
which depends on the local diffusion coefficient.
Bottom: matrix compression of the dyadic pow-
ers of T on the scaling function bases of the Vj ’s:
notice the size of the matrices shrinking with

scale.

For example we can consider the non-homogeneous heat
equation on the circle

(3.1)
∂u

∂t
=

∂

∂x

(
c(x)

∂

∂x
u

)

where c(x) is a positive function close 0 at certain points and
almost 1 at others. We want to represent the intermediate
and large scale/time behavior of the solution by compressing
powers of the operator representing the discretization of the
spatial differential operator ∂

∂x

(
c(x) ∂

∂x

)
. The spatial differ-

ential operator on the right-hand side of (3.1) is a matrix T
which, when properly normalized, can be interpreted as a non-
translation invariant random walk. Our construction yields
a multiresolution associated to this operator that is highly
nonuniform, with most scaling functions concentrated around
the points where the conductivity is highest, for several scales.
The compressed matrices representing the (dyadic) powers of
this operator can be viewed as multiscale homogenized ver-
sions, at a certain scale which is time and space dependent,
of the original operator, see Figure 5.

While the examples above illustrate classical settings, the
construction of diffusion wavelets carries over unchanged to
weighted graphs, by considering the generator of the diffusion
associated to the natural random walk (and Laplacian) on
the graph. It then allows a natural multiscale analysis of
functions of interest on such a graph. We expect this to have
a wide range of applications to the analysis of large data sets,
document corpora, network traffic, et al., which are naturally
modelled by graphs.

4. Extension of empirical functions off the data
set

An important aspect of the multiscale developed so far in-
volves the relation of the spectral theory on the set to the
localization on and off the set of the corresponding eigenfunc-
tions and diffusion scaling functions and wavelets. In addi-
tion to the theoretical interest of this topic, the extension of
functions defined on a set X to a larger set X is of critical im-
portance in applications such as statistical learning. To this
end, we construct a set of functions, termed geometric har-
monics, that allow to extend a function f off the set X, and
we explain how this provides a multiscale analysis of f . For
a more detailed studied of geometric harmonics, the reader is
referred to [22].

4.1. Construction of the extension: the geometric har-
monics. Let’s specify the mathematical setting. Let X be a
set contained in a larger set X, and µ be a measure on X.
Suppose that one is given a positive semi-definite symmetric
kernel k(·, ·) defined on X ×X, and if f is defined on X, let
K : L2(X, µ) → L2(X, µ) be defined by

Kf(x) =
∫

X

k(x, y)f(y)dµ(y) .

Let {ψj} and {λ2
j} be the eigenfunctions and eigenvalues of

this operator. Note that under weak hypotheses, the operator
K is compact, and its eigenfunctions form a basis of L2(X,µ).
Then by definition, if λ2

j > 0, then

ψj(x) =
1
λ2

j

Kψj(x) =
1
λ2

j

∫

X

k(x, y)ψj(y)dµ(y) ,
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where this identity holds for x ∈ X. Now if we let x be in
X, the right-hand side of this equation is well-defined, and
this allows to extend ψj as a function ψj defined on X. This
procedure, that goes by the name of Nyström extension, has
been already suggested to overcome the problem of large scale
data sets [23], and to speed up the data processing [24].

From the above, each extension is constructed as an inte-
gral of the values over the smaller set X, and consequently
verifies some sort of mean value theorem. We call these func-
tions geometric harmonics.

From the numerical analysis point of view, one has to be
careful as λj → 0 as j → +∞, and one can extend only the
eigenfunctions ψj for which λ2

j > δλ2
0, where δ > 0 is preset

number. We can now safely define the extension of function
f from X to X by

f(x) =
∑

λ2
j>δλ2

0

〈ψj , f〉Xψj(x)

for x ∈ X, where 〈·, ·〉X is the inner product of L2(X, µ).
This way, the extension operation has condition number 1

δ .
We immediately notice that for f to approximately coincide
with f on X, one must have that most of the energy of f be
concentrated in the first few eigenfunctions ψj .

Let’s give three examples of geometric harmonics. The first
example is related to potential theory. Assume that X is a
smooth closed hypersurface of Rn = X, dµ = dx and consider
the Newtonian potential in Rn:

k(x, y) =
{ − log(‖x− y‖) if n = 2, ,

1
‖x−y‖n−2 if n ≥ 3 .

Then the geometric harmonics have the form

ψj(x) =
1
λ2

j

∫

X

k(x, y)ψj(y)dy ,

and are obviously harmonic in the domain with boundary X.
If f is a function on X representing the single layer density
of charges on X, then the extension f is, by construction, a
sum of harmonic functions, and is an harmonic extension of
f .

For the second example, consider a Hilbert basis {ej}j∈Z
of a subspace V of L2(Rn) ∩ C(Rn). For instance, this could
be a wavelet basis of some finite scale shift-invariant space.
Then the diagonalization of the restriction of kernel

k(x, y) =
∑

j∈Z
en(x)e∗n(y)

to a set X generates geometric harmonics, and an extension
procedure of empirical functions on X to functions of V .

The third example is of particular importance as it general-
izes the Prolate Spheroidal Wave Functions introduced in the
context of signal processing by [25, 26]. Assume that X ⊂ Rn

and consider the space VB of bandlimited functions with fixed
band B > 0 (we call these functions B−bandlimited). Fol-
lowing the procedure explained in the second example, we can
construct geometric harmonics {ψj} that are B−bandlimited.

It can be shown that this comes down to diagonalizing the
kernel

kB(x, y) =
∫

‖ξ‖<B

e2iπ〈ξ,x〉e−2iπ〈ξ,y〉dξ =
Jn

2
(2πB‖x− y‖)
‖x− y‖n

2

where x and y belong to X, and Jν is the Bessel function of
the first type and of order ν. From the first equality sign, we
see that the geometric harmonics arise from a Principal Com-
ponent Analysis of the set of all restrictions of B−bandlimited
complex exponentials to X.

It can verified that, in addition to be orthogonal on the
set X, these B−bandlimited geometric harmonics are also
orthogonal over the whole space Rn. Moreover, ψj minimizes
the Rayleight quotient

∫
Rn |f(x)|2dx∫
X
|f(x)|2dx

under the constraint that f be orthogonal to {ψ0, ψ1, ..., ψj−1}.
In other words, ψ0 is the B−bandlimited extension of ψj

that has minimal energy on Rn. As a consequence, f is the
B−bandlimited extension of f that has minimal energy off
the set X. This type of extension is optimal in the sense that
it is the average of all B−bandlimited extension of f . It also
suggests that this extension satisfies Occam’s razor in that
it is the “simplest” among all bandlimited extensions: any
other extension is equal to f plus an orthogonal bandlimited
function that vanishes on X.

4.2. Multiscale extension. For a given function f on X, we
have constructed a minimal energy B−bandlimited extension
f . In the case when X is a smooth compact submanifold of
Rn, we can now relate the spectral theory on the set X to
that on Rn.

On the one hand, any band limited function of band B > 0
restricted to X can be expanded to exponential accuracy in
terms of the eigenfunctions of the Laplace-Beltrami opera-
tor ∆ with eigenvalues ν2

j not exceeding CB2 for some small
constant C > 0. On the other hand, it can be shown that ev-
ery eigenfunction of the Laplace-Beltrami operator satisfying
this condition extends as a bandlimited function with band
C ′B. Both of these statements can be proved by observing
that eigenfunctions on the manifold are well approximated by
restrictions of bandlimited functions.

We conclude that any empirical function f on X that can
be approximated as a linear combination of eigenfunctions of
∆, and these eigenfunctions can be extended to different dis-
tances: if the eigenvalue is ν2, then the corresponding eigen-
function can be extended as a ν−bandlimited function off the
set X to a distance Cν−1. This observation constitutes a
formulation of the Heisenberg principle involving the Fourier
analysis on and off the set X, and which states that any em-
pirical function can be extended as a sum of “atoms” whose
numerical supports in the ambient space is related to their
frequency content on the set.

The generalized Heisenberg principle is illustrated on figure
4.2, where we show the extension of the functions fj(θ) =
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6 GEOMETRIC DIFFUSIONS: MULTISCALE METHODS

cos(2πjθ) for j = 1, 2, 3 and 4, from the unit circle to the
plane. For each function, we used gaussian kernels, and the
scale was adjusted as the maximum scale that would preserve
a given accuracy.

Figure 6. Extension of the functions fj(θ) =
cos(2πjθ) for j = 1, 2, 3 and 4, from the unit
circle to the plane.

5. Conclusion

We have introduced a multiscale structure for the efficient
computation of large powers of a diffusion operator, and its
Green’s function, based on a generalization of wavelets to
the general setting of discretized manifolds and graphs. This
has application to the numerical solution of partial differen-
tial equations, and to the analysis of functions on large data
sets and learning. We have shown that a global (with eigen-
functions of the Laplacian) or local (with diffusion wavelets)
analysis on a manifold embedded in Euclidean space can be
extended outside the manifold in a multiscale fashion using
band-limited functions.
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Abstract

We extend the concept of good continuation in a uni-
form fashion from boundaries to shading, hue, and tex-
ture. Each has the property that local measurements yield
an orientation, which we explicitly establish for hue using
geometric harmonic techniques. Good continuation arises
in a geometric sense, because these orientations all vary
smoothly in an appropriate sense. Thus they correspond to
flows. Taken together they define a layered set of flows, in
the sense the “horizontal” computations within each flow
provide global consistency while “vertical” computations
across flows enable the identification of shading and shad-
owing and different types of edges. Evidence is reviewed
that primate visual systems enjoy such an organization.1

“...space and color are not distinct elements but,
rather, are interdependent aspects of a unitary pro-
cess of perceptual organization.” Kanizsa [17]

1. Introduction

Image segmentation is normally taken to be that pro-
cess of partitioning the image into a complete cover of non-
overlapping regions, with the boundaries of these regions
related to the (projected) boundaries of objects in the world.
One source of complexity in this process is shadowing, by
which image intensities vary both as a function of surface
orientation (e.g., shading) and as a function of light sources
(e.g., cast shadows). Land’s retinex theory [19] suggested
one way to manage this complexity, by ascribing abrupt im-
age changes to material (or reflectance) discontinuities and
smooth gradient changes to lighting. This developed into
the intrinsic image concept [30], which emphasized that
surface properties, geometry, and lighting all map into the

1Acknowledgements: Research supported by AFOSR, DARPA, ONR
and the Toman and Frankel Funds from Ben-Gurion University.

image, and suggested representing them separately as im-
ages. Undoing this map clearly involves an inverse prob-
lem, which requires a model of some sort. One possibility
is to try to learn the context of every possible measurement,
a type of pseudoinverse [28]. Here we extend the notion
of context in a different way, by considering natural images
such as those in Fig. 1. Notice how space,reflectance, and
lighting conspire together. We seek to find a representation
rich enough to support unwinding this.

The first requirement for such a representation is that it
be rich enough to capture the above phenomena. But un-
like special purpose algorithms applicable in one situation
(e.g., [16, 13]), our second requirement is that it be gen-
eral purpose. That is, the information that it makes explicit
must support computations for unraveling many such phe-
nomena.

We do not yet have a formal solution to this problem
that we can prove is complete. Instead, and consistent with
the goals of this Workshop, we develop an argument based
on a neurobiological analogy, several steps of which have
been formalized and are complete. The demonstrations in
the final section of this paper involve phenomena beyond
the current capability of any single existing algorithm, and
provide counterexamples to many. Constructively, however,
we submit that any final solution will have an intermedi-
ate representation at least as rich as the one we describe.
Thus we see the contribution of this Workshop submission
as consisting of (i) an enlargement of the framework for per-
ceptual organization informed by (ii) the rich foundation for
perceptual organization in primate visual systems.

The core of our argument is that good continuation ap-
plies to several key domains: boundaries, intensity (shad-
ing); hue; texture; saturation, and so on, all of which enjoy
a certain differential geometric structure. It is this struc-
ture that relates to the Gestalt notion of good continuation.
Computationally we propose a layered representation—
similar in spirit to intrinsic images [30]—but different in

"The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or 
endorsements, either expressed or implied, of AFRL/SNAT (now AFRL/RYAT) or the U.S. Government."

"This material is based on research sponsored by AFRL/SNAT under agreement number FA8650-05-1-1800 (BAA 04-03-SNK Amendment 3).  The U.S. 
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon."
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Figure 1. The rich interaction between surfaces, lighting, pigmen-
tation, and atmosphere work together to provide a diversity of ap-
pearance phenomena in natural images. To simply claim that “ap-
ples are red” or “bananas are yellow” or “the sky is blue” amounts
to an assumption that physical processes in the world are constant
in a way that only artificial examples can really achieve.

that all share the property that they are flows in a technical
sense. This is what we meant by layered flows implied in
the title, and computations across these flows then reflect
subtle lighting, surface, and space interactions.

Fig. 1 illustrates this point in several different domains
(see also [3]. Apples are not a single color; rather, fruits
mature differentially and this is reflected in their pigmen-
tation. Attempts to remove these slow variations as light-
ing are one reason why lightness and color constancy algo-
rithms have problems. Atmospheric depth effects impose a
blue tint with distance because of increased scattering and
in spite of surface reflection effects. Mutual illumination
and color bleeding mix everything.

We approach the lift of these images into layered flows
in two stages, both of which are mathematical but motivated
by biology. We concentrate on one flow (from the color
pathway) because, as will become clear below, the others fit
naturally into our framework and are more widely discussed
in the literature. Specifically, we first consider the question
of how to represent color information as a dimensionality-
reduction problem, which leads formally to intensity-hue-
saturation coordinates at each point. This is important for
us, because it suggests that there is more to color process-
ing than simple detection tasks (consider: locate a red fruit
among green foliage [27]) for which the standard cone pig-
ments are tuned. We next consider (hue) interactions be-
tween points and adopt a technique previously used to de-
noise color patterns to articulate the flow of hue across im-
age coordinates. The resultant computations are then run on
the examples in Fig. 1.

2. Representation of Color at a Point

Take as data the Munsell patches considered as points
in wavelength space. While wavelength-space is rather
high-dimensional, our strategy is motivated by the obser-
vation that colors are not randomly distributed thoughout
wavelength space, but rather occupy only a small portion
of it. One possibility, suggested by the visual photopig-
ments in primates, is that this structured space of colors
is 3-dimensional. While this is a classical view of color,
many of the classical algorithms have been modified in an
ad hoc fashion to take account of non-linearities among col-
ors (e.g., Multi-Dimensional Scaling). For this reason we
use a new algorithm ([10, 11]) derived from the geomet-
ric harmonics (reviewed below) that can handle inherently
non-linear data. It is in the class of spectral methods, and is
related to [4].

2.1. Geometric Harmonics

Let X = {x1, x2, ..., xN} be the set of data points, in
this case Munsell patches, with each xi ∈ Rn. We seek to
find a projection of these data into much lower dimension,
under the assumption that they are not randomly distributed
thoughout Rn but rather that they lie on (or near) a lower-
dimensional manifold embedded in Rn.

The structure of the data are revealed via a symmet-
ric, positivity-preserving, and positive semi-definite kernel
k(x, y), which provides a measure of similarity between
data points. The result is a graph, with edges between
nearby (according to the similarity kernel) data points. (The
similarity value can be truncated to 0 for all but very similiar
points.)

From this we construct a diffusion kernel a(x, y) on the
data set using the weighted graph Laplacian normalized as
follows:

a(x, y) =
k(x, y)

ν(x)
, (1)

where ν =
∑

y∈X k(x, y). Note that, although symmetry
is lost, we do have

∑

y∈X a(x, y) = 1 so the kernel a(x, y)
can be interpreted as the transition matrix of a Markov chain
on the data X. The kernel a(m) of the mth power of this
matrix then represents the probability of getting from x to y
in m steps.

If we now define the averaging operator for a function f
defined on the data:

Af(x) =
∑

y∈X

a(x, y)f(y) (2)

then A admits a spectral theory. To develop this we sym-
metrize a by:

ã(x, y) =

√

ν(x)
√

ν(y)
a(x, y) (3)
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which makes ã symmetric and positive semi-definite (al-
though no longer row-stochastic). The spectral decompo-
sition is then given by ã =

∑

i≥0 λ2
i φj(x)φj(y) with the

important consequence

˜a(m)(x, y) =
∑

i≥0

λ2m
i φj(x)φj(y) (4)

where λ0 = 1.
Increasing powers of the operator A can be obtained by

running the chain through the spectral decomposition. This
gives rise to the family of diffusion maps {Φm}m∈N given
by

Φm(x) =







λm
0 φ0(x)

λ2m
1 φ1(x)

...






(5)

Diffusion distances D2
m(x, y) = ã(m)(x, x) +

ã(m)(y, y)− 2ã(m)(x, y) within the high-dimensional mea-
surement space then approximate Euclidean distance in the
diffusion map space.

2.2. The Munsell Color Space

The Munsell [22] patches were chosen according to hu-
man psychophysics, with each step between patches per-
ceptually equal, and they are now known to be physiologi-
cally relevant [31, 29, 15]. Thus they represent data span-
ning those portions of color space relevant to our interac-
tions with the visible world. We now seek to understand
whether these data lie on or near a well-defined structure in
wavelength-space.

Two experiments were performed. We used N = 1269
patches, each with n = 421 wavelengths (380nm - 800nm
in 1nm steps). The kernel is exp(−d2

ij/σ) where dij is the
Euclidian distance between patch i and patch j. While the
patch data are given in no particular order, the geometric
harmonic map arranges them so that patches are close to
one another provided the diffusion distance between them
in wavelength space is small. The results are shown in
Fig. 2. Note that the natural representation emerges—
intensity, hue, saturation—even though the hue (color cir-
cle) is non-linear. The diffusion maps recover the Munsell
representation, thus demonstrating that the structure is in
the wavelength data. In the second experiment we first pro-
jected the wavelength data through the human cone pho-
topigments; and again the color circle emerged (Fig. 2, bot-
tom).

3. Spatio-spectral Interactions

Now that we know there is a preferred representation for
color at a point, we next consider the question of how col-
ors interact between nearby points. We first observe that
the primate visual system is well organized to address this

S

H

V

MagentaBlue

Green Yellow

Red
WhiteCyan

Figure 2. Geometric harmonics organize Munsell color patches.
(top row, left) Typical “page” of the patch data used in the
experiment. Data from http://spectral.joensuu.fi-
/databases/download/munsell spec matt.htm.
(right) Classical intensity, hue, saturation color space. Note that
hue is organized around the circle. (middle row) The geometric
harmonic organization of the Munsell data. Each point represents
a single patch, and the scatterplots show the distribution of points
in the subspace spanned by the first three non-trivial eigenfunc-
tions. Two views are shown, with (left) illustrating different
clusters according to the Munsell chromaticity parameters and
(right) a view showing the hue circle. That this non-linear
organization of the data is recovered by geometric harmonics
is significant because it provides the foundation for the next,
geometric stage of processing. (bottom row) Organization of
the Munsell data first projected through the three human cone
photopigments. Since the two views are essentially the same as
(middle), the Munsell representation is largely invariant to the
order of projection.

problem. While it is widely accepted that perceptual orga-
nization is first accomplished via the long-range horizontal
connections in superficial V1, consideration of these con-
nections has been limited to orientation good continuation
for boundaries ([24, 1, 2]) and textures ([7]). However, there
exists a specialized structure for color (and contrast) infor-
mation in the cytochrome oxidase blobs, within which neu-
rons also enjoy long-range horizontal interactions (Fig. 3
[32]). We submit that it is precisely these connections that
implement a geometry for hue (and color) that is formally
analagous to that for texture[7] and shading [9, 21] flows. A
sketch of this geometry is developed next. The extension to
include boundaries is in [5].
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Figure 3. The cytochrome oxidase blobs in superficial primate vi-
sual cortex are specialized for the processing of color. The (left)
figure shows the blobs selectively stained to highlight their lo-
cations regularly interspersed between orientation hypercolumns.
(right) When single cells are filled with dye, their long-range con-
nections become clear. Note how axons tend to terminate within
(or near) other cytochrome oxidase blobs (drawn in outline). We
submit that it is these long-range connections that enforce “good
continuation” between hues at nearby positions. Images courtesy
of E. Callaway, Salk Insitute.

3.1. Geometry of Hue Fields

Within the (intensity, hue, saturation) color space, the
hue component across the image is a mapping H : R

2 →
S1 and thus can be represented as a unit length vector field
over the image. In many images this hue field is piecewise
smooth (Fig. 4) with singularities corresponding to signif-
icant scene events (e.g., occlusion boundaries or material
changes).

The frame field [23] obtained by attaching a (tangent,
normal) frame {ET , EN} to each point in the image do-
main is the representation suggested by modern differential
geometry. This provides a local coordinate system in which
the hue vector and related structures can be represented.
Most importantly among these are the covariant derivatives
of ET and EN , which represent the initial rate of change of
the frame when it is moved in a direction v expressed by the
connection equation [23]:

(

∇V ET

∇V EN

)

=

[

0 w12(V )
−w12(V ) 0

] (

ET

EN

)

(6)

The coefficient w12(V ) is a function of the tangent vector
V , which represents the fact that the local behavior of the
flow depends on the direction along which it is measured.
w12(V ) is a linear 1-form, so it can be represented with two
scalars at each point:

κT
4
= w12(ET )

κN
4
= w12(EN ) .

(7)

We call κT the hue’s tangential curvature and κN the hue’s
normal curvature - they represent the rate of change of the
hue in the tangential and normal directions, respectively.

Since the local behavior of the hue is characterized (up to
Euclidean transformation) by a pair of curvatures, it is nat-
ural to conclude that nearby measurements of hue should

relate to each other based on these curvatures. Put differ-
ently, measuring a particular curvature pair (κT (q), κN (q))
at a point q should induce a field of coherent measurements,
i.e., a hue function ˜HUE(x, y), in the neighborhood of q.
Coherence of HUE(q) to its spatial context HUE(x, y)
can then be determined by examining how well HUE(x, y)
fits ˜HUE(x, y) around q. Clearly, this should be a function
of the local hue curvatures (κT (q), κN (q)), it should agree
with these curvatures at q, and it should extend around q
according to some variation in both curvatures

While many local coherence models ˜HUE(x, y) are
possible, we exploit the fact that the hue field is a unit length
vector field which suggests that it behaves similarly to ori-
ented texture flows [6, 7] and adopt a similar curvature-
tuned local model.

˜HUE(x, y) = tan−1

(

κT (q)x + κN (q)y

1 + κN (q)x − κT (q)y

)

. (8)

Unlike texture flows, however, the local model for the hue
function is not a double helicoid since the hue function
takes values in [π, π) where texture flows are constrained
to

[

−π
2 , π

2

)

.
This local model possesses many properties that suit

good continuation; in particular it is both a minimal surface
in the (x, y, ˜HUE(x, y)) representation and a critical point
of the p-harmonic energy for all p. It is also the only local
model that does not bias the changes in one hue curvature
relative to the other, i.e., it satisfies

κT (x, y)

κN (x, y)
= const =

κT (q)

κN (q)
.

Examples of the model for different curvature tuning is il-
lustrated in Fig 5. A detailed technical account of the model
in the texture flow domain can be found in [7].

4. Examples of Flows

We now illustrate the above computations on several ex-
amples. We begin with artificial ones, to illustrate the points
most clearly, then proceed to natural ones to illustrate the
complexities that arise.

We stress that, for space reasons, some of these flows are
not visible unless one zooms in to enlarge the manuscript.

In the first Fig. 6, we show one of the few examples from
the psychophysical literature. In an important paper, King-
dom [18] created images consisting of superimposed sinu-
soids, one in brightness and the other in color. He demon-
strated that it is the intensity component that drives the im-
pression of shape-from-shading, while the color informa-
tion appears “painted” onto the undulating surface. We re-
produced this separation with our flows, from which it fol-
lows that the shading flow is sufficent (for these examples)
to derive the shape.
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Figure 4. Color images of natural objects are piecewise smooth and the hue flow captures this. (A) An apple with varying hue. (B) A
representation of hue as a scalar field, with value corresponding to height. (C) The hue field, with each value represented as a vector pointing
to location on the hue circle. (D) The geometry of the hue flow, illustrating that nearby values can be represented as a differentiable frame
field that is tangent (and normal) to the streamlines of the flow. Interations between nearby hue values then correspond to an (infinitesimal)
transport of the frame in direction V , which rotates it according to the connection form of the frame field. Since ET , EN are unit length,
their covariant derivative lies in a normal direction, regardless of V . This diagram also suggests a relationship between hue and texture and
shading flows.

Figure 5. Illustration of the different types of compatibility fields that can be used for early forms of good continuation. In each case
the central unit is supported by the contextual arrangement of surrounding units, and can be used as the constraints within quadratic
programming, relaxation labeling, and belief propagation engines. (top) For boundary continuation, the orientation at a position is enhanced
by consistent tangential (co-circular) boundary measurements at nearby positions [24, 14] (middle) For oriented texture measurements,
both tangential and normal curvatures arise. Similar models can be used for shading flows, which are the tangent fields to the intensity
level sets [8]. (bottom) For hue flows the orientations are replaced by colors. In the first column zero curvature continuations are shown.
In the last column, a single large curvature is shown. For the texture and hue compatibilities, the tangential curvature is zero and the normal
curvature is not. Note the emergence of singularities.

The shading flow is estimated by evaluating a gradient
operator (an orientationally-selective receptive field tuned
to low spatial frequency) over the image. It demonstrates
one role for the long-range interactions: correcting local ar-
tifacts in shading flow estimation.

Our next examples (Fig. 7) on artificial images con-
firm the classical view that color remains invariant across
shadows while shading effects surface percepts [25]. This
is most clear in the plastic sphere, and the same effect
is reproduced in the Google logo, which appears both
3-dimensional and colored. However, unlike the plastic
sphere, there are no mutual illumination effects.

The next examples show how hue can vary over a natural
object. Fig. 4 shows the hue flow for an apple, and Fig. 8

is a close-up of a woman’s face in which a blush has been
introduced. Note in particular how variant the “color” is, a
point of some relevance to both face identification and emo-
tional estimation. Hue can also vary systematically over a
scene. Atmospheric depth scattering is shown in Fig. 9.

Our next two examples illustrate the beautiful complex-
ity of shading, hue, and boundary interactions. The first
shows an apple photographed on a highly reflective surface
in bright sunlight (Fig. 10). The flows are varied with re-
spect to one another and with respect to the boundaries (of
both the apple and the shadow). In particular, the mutual il-
lumination modulating the shadow [20] introduces a smooth
shading flow not unlike the one for the plastic sphere or the
Kingdom examples but this time due to a lighting effect and
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Figure 6. Results on the test Kingdom images. Note how both
provide the impression of an undulating surface with color on it.
The left column is Kingdom Fig. 2d; the right column is Kingdom
Fig. 2c. From top to bottom are original images; initial estimate
of shading flow (tangents to intensity level sets); final estimate of
shading flow; initial estimate of hue flow; final estimate of hue
flow. The shading flow corresponds to the undulations; the hue
flows are smooth and do not interfere with them.

not a surface normal effect. The mutual illumination effect
is also strong on the bananas image (Fig. 11), which also
illustrates a shading flow effect due to a highly diffuse cast
shadow. In this case the cast shadow phenomenon is readily
identified, because the hue flow is constant across it.

Our final example (Fig. 12) illustrates the complement
to shading and hue; notice how the hue remains invariant
through the highlight, even though it is a complex pattern
for the pepper.

5. Summary and Conclusions

Perceptual organization was viewed within Gestalt psy-
chology as pervasive in perception, but discussion of such
issues in computer vision is significantly more limited. Our
goal in this paper was to take a step back and raise the pro-
file of questions for which P.O. is relevant. Following a
biological analogy, we introduced the construct of multiple
(spatially) aligned flows within which Gestalt good contin-
uation can be enforced geometrically but between which
information can be inferred about the many complexities
of lighting, space, and geometry. The computation of each

Hue channel

Figure 7. Shading and hue flows for artificial objects. Although
the shading flow fields are not shown, notice how the hue flows
(superimposed on the original image) are constant over the “plas-
tic” objects. This is the way such materials were designed. The
case of the sphere also introduces two more complex lighting ef-
fects. First, note how the hue flow remains constant through the
shadow. This is a classical cue for separating shadow boundaries
from surface boundaries. (Surface boundaries are taken to involve
different materials, and therefore a hue discontinuity together with
the intensity discontinuity.) Second, and less familiar, is the mu-
tual illumination between the sphere and the tabletop, which is
captured by the hue flow but not the shading flow. The left mag-
nification shows the initial local measurements of hue; the right
magnification shows the converged hue flow. A boundary has been
introduced around the hue flow on the table top illustrating an elon-
gation in the direction of the source.

Figure 8. Hue flows vary for natural objects. This shows a portion
of a woman’s face (the lips are lower left) when she is blushing
(blue vectors) and not blushing (black vectors). Note how hue
varies both spatially and as a function of emotional and physical
states.

flow was global, based on local measurements and differen-
tial (covariant derivative) constraints between them. At the
same time the computation of each flow was local within an
information (sometimes within a sensor) source, and logical
relationships between flows provide a new foundation for
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Figure 9. Hue flows and atmospheric depth effects. The flow is
shown along a thin strip on the right side of the photograph. Note
the dominant shift toward blue for the upper half.

Figure 10. An image of an apple on colored cardboard in bright
sunlight. It illustrates the complexities that can arise both for shad-
ing due to surface irregularities from packing and from mutual il-
lumination. In particular, the shaded area now exhibits a shading
flow derived from mutual illumination, in which the gradient de-
creases in magnitude away from the concavity between the apple
and the table. At the same time, there is strong mutual illumina-
tion between the apple and the cardboard and the cardboard and
the apple. The result are smooth shading and hue flows, with dis-
continuities at neither object nor shadow edges.

many computer vision computations. Hue flows smoothly
through shadows, while intensity often jumps. Shading
flows smoothly over many man-made objects, while hue is
often constant. Natural objects often imply smooth shading
and hue flows, although they are typically independent of
one another. The involvement of boundaries is both neces-
sary and complicated [12].

Figure 11. A photograph of bananas illustrates the richness of mu-
tual illumination in a complex scene. The result is an essentially
constant hue flow (middle row, left: initial measurement; right:
consistent flow). The shading flow (bottom) illustrates a special
interaction between boundaries and shading flows, in which multi-
ple surface fold away from each other along them. Such situations
are geometrically rare.

While the list of interactions must be extended (motion
and stereo should at least be included), it is useful to con-
clude on an enlargement of the biological metaphor under-
lying this paper. The centrality of long-range horizontal
connections as defining each flow suggests that the flows be
layered on top of one another, enabling “vertical” connec-
tions for their interactions. Recent breakthoughs in color
processing demonstrate that hue and orientation are not in-
dependent, as was once thought, and that such vertical con-
nections exist [26]. Computationally it remains an open
question whether only two interaction “dimensions” suffice.
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ABSTRACT

We describe signal processing tools to extract structure and information from arbitrary digital data sets. In
particular heterogeneous multi-sensor measurements which involve corrupt data, either noisy or with missing
entries present formidable challenges. We sketch methodologies for using the network of inferences and similarities
between the data points to create robust nonlinear estimators for missing or noisy entries. These methods enable
coherent fusion of data from a multiplicity of sources, generalizing signal processing to a non linear setting. Since
they provide empirical data models they could also potentially extend analog to digital conversion schemes like
“sigma delta”.

Keywords: Markov processes, multiscale analysis, diffusion on manifolds, Laplace-Beltrami operator.

1. FEATURE BASED FILTERING, DIFFUSIONS AND SIGNAL PROCESSING ON
GRAPHS

A simple way to understand the effect of introducing similarity based diffusions on data1–6 is provided by
considering a regular gray level image in which we associate with each pixel p a vector ν(p) of features.7, 8 For
example, a multi-band electromagnetic spectrum or the 5×5 sub-image centered at the pixel, or any combination
of features. Define a Markov filter

Ap,q =
exp− ||ν(p)−ν(q)||2

ε
∑

q exp −||ν(p)−ν(q)||2
ε

, (1)

where ε > 0 is a small parameter comparable to the smallest distances between two feature vectors ν(p) and
ν(q). Clearly the map ν is a bijection between pixels in the image and patches (or features). In particular every
function on the pixels, such as the original image I itself, is also a function on the set of patches. With this
identification, one can let the Markov filter Ap,q act on an image.

The image I in figure 1 was filtered using the (nonlinear in the features) procedure described above where
the feature vector ν(p) is the 5 × 5 patch around a pixel p:

I(p) =
∑

q

Ap,qI(q) =
∑

q

exp− ||ν(p)−ν(q)||2
ε

∑

q exp −||ν(p)−ν(q)||2
ε

I(q) . (2)

Observe that the edges are well preserved as patches translated parallel to an edge are similar and contribute
more to the averaging procedure.7, 8 We should also observe that if we were to repeat the procedure on the
filtered image we would get a numerical implementation of various nonlinear heat diffusions for image processing
similar to those in PDE methods, such as those by Osher and Rudin.

It is useful to replace A by a bi-Markovian version of the form

Ap,q =
exp −||ν(p)−ν(q)||2

ε

ω(p)ω(q)
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Figure 1. Left: original noisy image. Right: image denoised by application of the Markov matrix as in (1)

Figure 2. Left: original noisy image. Right: image denoised by application of the Markov matrix as in (1), but where
features are local variances rather than pixel values in a patch around each pixel.

where the weights ω(·) are selected so that A is Markov in p and q.

The noisy IR image in Figure 2 was filtered by N. Coult using a vector of 25 statistical features associated
with each pixel.

The Markov matrix used for filtering, defines a diffusion on the graph of patches or features viewed as a subset
of 25 dimensional Euclidean space. The eigenvectors of this diffusion permit us to compute all of its powers and
to define a diffusion geometry and signal processing on this “image graph”.7

For the next example consider 3 noisy sensors measuring the x, y, z coordinates of a trajectory in three
dimensions. We could try to denoise each coordinate separately. Or use the position vector as as a feature vector
as we did for the images above. See Figure 1.

The construction above should be viewed as signal processing on the data graph. We view all points of the
trajectory as a data graph,ie data points p and q are vertices and Ap,q is the weight of the edge connecting them

Proc. of SPIE Vol. 6232  623209-2137
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Figure 3. The green, red and blue curves are respectively the coefficients of the x, y, z coordinates , as filtered above,
using less than 10 eigenvectors of the Markov matrix. These simple examples indicate that diffusion geometries are an
efficient tool for sensor fusion ,and coherent signal processing for nonlinearly correlated data streams.

measuring their similarity or affinity at scale 1. We consider the eigenvectors of the Markov matrix Ap,q defined
above as a basis for all functions on this Graph. We can then expand each coordinate as a function on that
graph, and restrict the expansion to the first few low frequency eigenfunctions, ie filter it and use the filtered
coordinates as a clean trajectory.1 This generalizes the simple filtering obtained above (see Figure 1).

2. DIFFUSION GEOMETRIES

These simple examples indicate that diffusion and harmonic analysis are useful for coherent sensor integration
and fusion, enabling signal processing for nonlinearly correlated data streams. Diffusion geometries enable
the definition of affinities and related scales between any digital data points in (provided of course that the
infinitesimal proximity in the coordinates corresponds to true affinity between data points). Moreover it enables
the organization of the population of sensor output into affinity folders or subsets with a high level of affinity
among their responses . In particular we claim that the eigenfunctions of the diffusion operator or equivalently
a Laplacian on a graph provide useful empirical coordinates, which enable an embedding of the data to low
dimensional spaces so that the diffusion distance at time t on the original data becomes Euclidean distance in
the embedding, in effect providing a nonlinear version of the SVD.1 Moreover we indicate how the diffusion at
different times leads to a multiscale analysis generalizing wavelets and similar scaling mechanisms.4, 6, 9

To be specific,1, 10 let the bi-Markov matrix A defined above be represented in terms of its eigenvectors:

Ap,q =
∑

l

λ2

l ϕl(Xp)ϕl(Xq)
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Figure 4. Left: standard position of electrodes in EEG. Middle: diffusion map of the responses to 4 electrodes, showing
the nonlinear correlations and manifold-like structure of these responses. Right: diffusion map of the responses to all
electrodes, exhibiting similar nonlinear correlations. In fact, the manifold structure obtained from measuring from all
electrodes is very close to that obtained from 4 electrodes, suggesting that exploiting the nonlinear correlations would
allow to use only 4 electrodes.

and define the diffusion map Φ(t)
m at time t into m dimensional Euclidean space by

Xp �→ Φ(t)
m (Xp) := (λt

1
ϕ1(Xp), λt

2
(Xp), . . . , λt

mϕm(Xp)) (3)

For a given t we determine m so that λt
m+1

is negligible. The diffusion distance1 at time t between X
(t)
p and

X
(t)
q is given as

d2

t (p, q) = Ap,p + Aq,q − 2Ap,q =
∑

l

λ2t
l (ϕl(Xp) − ϕl(Xq))2 = ||Φ(t)

m (Xp) − Φ(t)
m (Xq)||2 .

This map enables us to represent geometrically an abstract set of measurements on a sensor array (measure-
ment space) as we illustrate on the following EEG example.11

The 20 electrodes measure coherent electrical activity in the brain. Mapping the configuration space of
the measurements of 4 electrodes leads to the same configuration as for all 20. In the linear case this will be
obtained by de-correlating the outputs , here however different locations of sources result in a different attenuation
vectors ,or linear de-correlations. Here the first three nontrivial eigenvectors are used to map the data to three
dimensions (diffusion map), see Figure 4. The implications are obvious 4 electrodes suffice to get essentially the
same measurements , redundancy is useful to obtain a clean version.11

3. MULTISCALE STRUCTURES AND THE EMERGENCE OF ABSTRACT
SENSOR FEATURES

It is possible to build a multiscale decomposition of a data graph simply by organizing the data into affinity
folders where the affinity is measured through the diffusion distance at different time scales A simple algorithm9

is obtained as follows Let xl+1

j be a maximal sub-collection of points in {x1

j} (key-points at scale 1) such that
dtl

(xl+1

j , xl+1

i ) ≥ 1

2
, where x0

j are the original points, and tl = a2l, l = 0, 1, 2, . . . . Then clearly each point is at
distance less than a half at scale l from one of the selected key-points allowing us to create a folder labeled by
the key-point. It is easy to modify to obtain a tree of disjoint folders by viewing each key point as the folder of
points nearest to it, and reinterpret the distance as distance between folders.

When applied to text documents (equipped with semantic coordinates), this construction builds an automatic
folder structure with corresponding keywords characterizing the folders.4, 7 While for text documents folders
are just collection of related documents, and abstractions are collection of words in a given class, the situation is
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Figure 5. Organization of the set of patches from an image. Top left: original image; bottom right: diffusion map of the
set of patches from the image; top right: the patches from image.

even more interesting for sensor outputs where the language occurs through self organization of data into affinity
folders.

To illustrate this point consider Figure 5

To organize the black and white image in Figure 5 we have considered all 8 × 8 patches as our primitive
data set forming the graph. 1, 7, 9 The first 2 eigenfunctions map them to the top right image,the first three
to the image at the bottom left ,we see that only two parameters emerge, the orientation and the number of
black pixels. If we now pick a little diffusion neighborhood say red patch on the 3d graph, it corresponds exactly
to a little curved edge on the boundary of the original black spot on the image . While simple, observe that
the organization is automatic requiring no a priori geometric information, and a rudimentary visual cortex has
emerged only through observation of 8 × 8 patch data TODO.

One can modify this basic construction of a hierarchical scale decomposition in order to build scaling functions
and wavelets on the graph/manifold, 4, 12, 13 which provide filters restricting the frequency content of a function
to bands of eigenfunctions of the diffusion or Laplace operator on the graph.

4. SENSOR FUSION

For a heterogeneous sensor system each category of sensors can be parametrized and normalized in its intrinsic
diffusion coordinates. A new graph is then created combining the relevant diffusion coordinates emanating from
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Figure 6. Classification results for the diffusion spelling scheme combining both channels, over 50 random trials.

different species of sensors as coordinates. As an example of integration of audio and video sensors we recorded
several grayscale movies depicting the lips of a subject reading a text in English and retained both the video
sequence and the audio track. Each video frame was cropped into a rectangle of size 140 × 110 around the lips
and was viewed as a point in R

140 × 110 . We took the log of the power spectrum of the window between two
frames as the audio vectors. We used a small vocabulary of ten words, zero, one, two, ... nine for training and
testing a simple classifier. To each spoken digit corresponded a small trajectory, i.e. “spelling” in the diffusion
geometry of the combined model. The combined graph was built from a feature representation of the data
based on appending the first 5 dimensional diffusion embedding of the audio channel with the first 5 dimensional
embedding of the video stream. A new graph is constructed from this collection of points in 10 dimensions ,
this graph is then embedded in lower dimensions and the trajectories of words on it (diffusion spelling) gives a
classification (see Figure 6) substantially superior to either audio or video alone.

Observe that the goal here is to do ab initio learning with no a priori assumptions or knowledge.

5. ANALYSIS OF NOISY OR CORRUPT DIGITAL DATA IN MATRICES

As seen above an affinity structure on a collection of points in Euclidean space leads to diffusion geometries.
More generally this data-driven geometric self organization also enables to analyze any data matrix according
to its intrinsic row or column structure. This procedure is useful even for purposes of achieving more efficient
numerical analysis, an analysis which generalizes the singular value decomposition, the fast multipole methods
and various other numerical compression methods. We claim that it is useful to view a data matrix as a function
on the tensor product of the graph build from the columns of the data with the graph of the rows of the data
In other words the original data matrix becomes a function of the joint inference structure (Tensor Graph), and
can be expanded in terms of any basis functions on this joint structure.

As is well known any basis on the column graph can be tensored with a basis on the row graph, but other
combined wavelet bases can also be obtained. As seen above we can use the rows as well as the columns of
the data to build two graphs which are then merged to a single combined structure (this procedure was done
above for any two graphs permitting a fusion of two different structures). A simple matrix processing or filtering
scheme is provided below: given data entries d ( q, r ) where, for illustration we can think of the rows q as sensors
and the columns r as responses:

D ( q, r ) =
∑

α,β

δ α,β ϕ α ( q ) ϕ β ( r ) , (4)

Proc. of SPIE Vol. 6232  623209-6141



where ϕα is a (e.g. wavelet) basis on Q, and ϕβ(r) is a (wavelet) basis on R. In the formula above

δα,β =
∑

q,r

d(q, r)ϕα(q)ϕβ(r) ,

where we accept this sum (as validated) only if various randomized averages using subsamples of our data lead
to the same value of δα,β . In the calculation of D we only use accepted estimates for δα,β .

The wavelet basis can of course be replaced by tensor products of scaling functions or any other approximation
method in the tensor product space, including other pairs of bases, one for q the other for r, including graph
Laplacian eigenfunctions (we observe in passing that the singular value decomposition is a particular case of this
construction ). A direct method for filtering d or estimating D without the need to build basis functions can be
implemented as at the beginning of this paper.

Define a Markov matrix A = a[(r, q), (r′, q′)] (corresponding to diffusion on Q × R) as

a[(r, q), (r′, q′)] =
exp

(

||ν(r)−ν(r′
)||2

ε + ||µ(q)−µ(q′
)||2

δ

)

∑

r,q exp
(

||ν(r)−ν(r′)||2
ε + ||µ(q)−µ(q′)||2

δ

) (5)

Where the vector ν(r) is response column vector corresponding to the column r, and µ(r) is a sensor row vector.

The parameters epsilon, delta are chosen after randomized validation as described above. We can have an
alternate definition of D as follows.

D(r, q) =
∑

r,q

a[(r, q), (r′, q′)]d(r, q) .

Observe that the distances occurring in the exponent can be replaced by any convenient notion of distance or
dissimilarities, and that any polynomial in A can be used to obtain a better filtering operation on the raw data.

A new combined graph can also be formed by embedding the graph Q × R into Euclidean space ,say by the
diffusion embedding , followed by an expansion of the data d(q, r) on this new structure, or by filtering as above
on the new structure.

5.1. Markov Decision Processes

In the papers14, 15 the multiscale analysis construction of diffusion wavelets is applied to Markov Decision Pro-
cesses. Informally, and in a simplified version, one or more agents explore a given state space S by taking actions
in each state from a set of actions A, and collect different rewards R, that we assume, to simplify the presenta-
tion, to depend only on the location and not on the action. Suppose we can model the state space as a finite
graph (S,E,W ) (the uncountable or continuous case can be handled as well), with edges E and weights W , and
that the agent(s) explore the state space randomly accordingly to the Markov process Pπ, parametrized by a
(policy) π, which maps each state to a probability distribution of actions for that state. The reward function
R is a real-valued function on S. The expected long term sum of discounted rewards when the agent follows
the policy π is a function V π on S, called (state) value function. It satisfies the so-called Bellman equation
V π = R + γPπV π, γ ∈ (0, 1] being the discount factor, and hence V π = (I − γPπ)−1R. In terms of potential
theory, (I − Pπ)−1 is the Green’s function (or fundamental matrix) of the “Laplacian” I − Pπ, and V π is the
potential generated by the “charge” R under the diffusion Pπ. Suppose for simplicity that Pπ is reversible: it
is then similar to a symmetric matrix Tπ that generates a Markov diffusion semigroup {(Tπ)t}. The diffusion
multiscale analysis allows to efficiently compute (Pπ)t(x, y) for arbitrary t, medium and large, for one or multiple
agents; it allows to effectively approximate the value function V π, which is often piecewise smooth, performing
a very useful dimensionality reduction,14 where ad hoc basis functions were previously constructed by hand and
were only available in particularly simple geometries. Finally, it allows to solve Bellman’s equation directly, to
high precision, in an efficient way. In15 this method is compared with classical direct methods (often unfeasible
because of their computational complexity of O(|S|3)), and with optimized iterative solvers.
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Figure 7. Left: continuous state space for a MDP, the actions are movements in the four cardinal directions, blue points
represent positive rewards. Right: after a random exploration by the agent, multiscale bases functions are constructed
on the state space: the color is proportional to the value of various scaling functions, which are automatically adapted
to the state space. The value function can be projected onto this basis, in fact if the value function is piecewise smooth,
only few elements of the basis (a number independent of the number of samples!) will be required to approximate the
value function to a given precision.

6. CONCLUSIONS AND DISCUSSION

It is quite clear from the preceding descriptions that the data graph can be equipped with informative geometric
structures which coherently integrate data and enable inference and interpolation. One of our main goals is to
efficiently regress empirical functions on a data set, we have indicated various methods to build and approxi-
mate empirical functions, admitting natural extensions (generalization) off the known measured data. We also
indicated that signal processing on data could be achieved without any knowledge of the data model, by letting
the intrinsic data geometry emerge through a natural process of affinity diffusion. Modern sensor systems such
as radar, hyperspectral, MRI and others actually do not measure images but much more elaborate vectors, the
images are built to allow understanding and further processing, in reality we should let the intrinsic geometry of
the measurements participate in the information extraction. Such an approach has been developed by our team
for hyperspectral imaging.

We also observe that in the context of compressed sensing where the sensor inputs are randomly encoded.
The projection into a random coded subspace while maintaining the relative affinity of the original data points
permits rebuilding the data geometry by tools described above.
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Goals:

• ATR Pattern Classification from Multiple Data Sources

• Representation of Information

• Dimensionality-reduction Framework

– Based on Diffusion Maps (”non-linear pca”)

– Purely Data Driven

– Reveal Intrinsic Data Geometry

• Fusion of Data Sources

• Simple → Complex Features

• “Symbolic” Features

c©Steven W. Zucker
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Accomplishments:

• Dimensionality-reduction Framework for Data Fusion

• Fusion of boundary/texture/color data for improved

segmentation

• Fusion of Auditory and Visual Data for improved classification

• (Fusion of left/right stereo pairs): advanced geometry

• (Embeddings of Symbolic Data): MMPI
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Overview of Talk:

• Dimensionality-reduction Framework

• Results: Fusion of Auditory and Visual Data for improved

classification

• Example: Fusion of boundary/texture/color data for improved

segmentation

• Overview of stereo system.

• Overview of color projections.

• Overview of MMPI-2 results.

c©Steven W. Zucker
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Gaussian kernel in dimensionality reduction (Short history)

The assumption that high dimensional data reside on or near a low

dimensional manifold inspired many theoretical and experimental

results.

• Schölkopf and Samola used uses the gaussian kernel with no

normalization for non-linear PCA .

• Belkin and Niyogi normalize the gaussian kernel to be the

laplacian of a graph defined on the data.

• Coifman and Lafon further normalize for non-uniform sampling

from the manifold.

c©Steven W. Zucker
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Given a set of n input vectors xi ∈ R
d

1. K0(i, j)← e−
‖xi−xj‖2

σ2

2. p(i)←∑n

j=1
K0(i, j) approximates the density at xi

3. ˜K(i, j)← K0(i,j)

p(i)p(j)

4. d(i)←
∑n

j=1
˜K(i, j)

5. K(i, j)← eK(i,j)√
d(i)
√

d(j)

6. USUT = K (by SVD of K)

Stages 2 and 3 normalize for density; stages 4 and 5 perform the graph laplacian normalization. In
limit n → ∞, and σ → 0

• K converges to a conjugate to the diffusion operator ∆.

• The functions ϕk(x) = uk(x)/u0(x) converge to the eigenfunctions of ∆ on M.

c©Steven W. Zucker
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Diffusion Maps Reveal “Manifold”
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Reading Lips
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Diffusion Maps Reveal “Manifold”
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Digit Trajectories over “Manifold”
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Visual Data Classifier

• View digit words as a trajectory in the diffusion space

• Word recognition is identifying trajectories

• Classifier: compare new trajectory to collection of labeled

(training) trajectories.

• Use symmetric Hausdorff distance between two sets Γ1 and Γ2,

defined as

d(Γ1, Γ2) = max

{

max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

.

(1)

c©Steven W. Zucker
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Visual Data Classification

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0 0 0.01 0 0 0.08 0 0 0

one 0 0.99 0 0 0 0 0 0 0.01 0

two 0.04 0.01 0.90 0.03 0.02 0 0 0 0 0

three 0 0 0.01 0.94 0 0 0.01 0.02 0.01 0

four 0.01 0 0 0.05 0.93 0 0 0 0 0

five 0 0 0 0 0 0.81 0.01 0.16 0 0.01

six 0.07 0 0 0.01 0 0 0.87 0.03 0.01 0.01

seven 0.03 0 0 0.04 0 0.07 0.05 0.74 0.04 0.02

eight 0 0 0 0 0.02 0.03 0 0.03 0.75 0.16

nine 0 0 0 0 0 0 0 0.04 0.14 0.82

c©Steven W. Zucker
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Note Similarities between Six and Seven
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Audio Data Classification (n = 10)

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.75 0 0.04 0 0.01 0.01 0.06 0.08 0.05 0

one 0 0.94 0 0 0 0.03 0 0 0 0.02

two 0.02 0 0.87 0.04 0.01 0 0.01 0 0.03 0.02

three 0.01 0 0.03 0.90 0.02 0.01 0 0 0.01 0.01

four 0.01 0 0 0.02 0.96 0 0 0 0 0.01

five 0.01 0.01 0 0.06 0 0.86 0 0.01 0.01 0.03

six 0 0 0 0 0.01 0 0.93 0.05 0 0

seven 0.05 0 0 0 0 0 0.14 0.81 0.01 0

eight 0.02 0 0.04 0.02 0 0.02 0 0.07 0.80 0.03

nine 0 0.01 0 0.01 0.01 0.04 0 0 0.01 0.92
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Multisensor Embedding For Sensor Fusion

• Starting with K input sources Ωk = {yk
1
, ..., yk

n}, k = 1...K.

• Compute the Laplace-Beltrami embeddings of {Ωk}, denoted

Φmk

k , where mk is the dimensionality of the embedding of

the k’th channel.

• Compute the unified coordinates set ̂Ω = {z1, ..., zn} by

appending the embeddings of each input sensor

zi = {φ1

i , . . . , φ
K
i }, i = 1...n, , k = 1...K.

c©Steven W. Zucker
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Audio and Visual Data Classification (n = 5 + 5)

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.00 0.00

one 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

two 0.00 0.00 0.96 0.01 0.02 0.00 0.00 0.00 0.00 0.00

three 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01

four 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00

five 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.02 0.01

six 0.06 0.00 0.00 0.00 0.00 0.00 0.90 0.04 0.00 0.00

seven 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.93 0.00 0.00

eight 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.95 0.03

nine 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.96
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Summary Classification

Channel type “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Audio 0.75 0.94 0.87 0.90 0.96 0.86 0.93 0.81 0.80 0.92

Visual 0.90 0.99 0.90 0.94 0.93 0.81 0.87 0.74 0.75 0.82

Combined 0.90 0.99 0.96 0.99 0.96 0.97 0.90 0.93 0.95 0.96
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Psychological Questionnaires

Answer by Yes or No

Group A

• I find it hard to wake up in the morning.

• I’m usually burdened by my tasks for the day.

• I love dancing.

What about Group B?

• I like poetry.

• I might enjoy being a dog trainer.

• I read the newspaper every day.

c©Steven W. Zucker
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Group A are questions like the ones in the MMPI-2 test,

aimed at estimating depression

• I find it hard to wake up in the morning. (yes)

• I’m usually burdened by my tasks for the day. (yes)

• I love dancing. (no)

In the MMPI-2 a (raw) score is the sum of ”correct answers”.

Group B, designed to test for other conditions,

seem unrelated to depression.

• I like poetry. (?)

• I might enjoy being a dog trainer. (?)

• I read the newspaper every day. (?)

c©Steven W. Zucker
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Questions:

• Are Group B answers informative about depression?

• If so, can incomplete questionnaires be scored correctly?

• Is the space of answers structured? and How?

Answering the latter suggests an approach to the former.

• MMPI-2 structure

• Manifold learning

c©Steven W. Zucker
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MMPI-2 and the diffusion framework

• Ambient space: x ∈ 567 dimensions

(yes/no answers → ±1).

• A set of responses xi lie on or near a low dimensional manifold

M in R
d

• M is sufficiently sampled with some density p by the training

set. For a given function g and a compact subset of R
d,Ω:

∑

xi∈Ω

g(xi) ≈
∫

Ω∩M

g(x)p(x)dΩ (1)

c©Steven W. Zucker
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• scales: functions on the answer vectors fdiagnosis(x) : R
d → R.

summation of ”correct answers”.

• diagnosis ∈ { anxiety, depression, . . . , hysteria }.

• The scoring function f : R
d → R is smooth on M.

c©Steven W. Zucker
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Scales as Functions on Data Points: Depression
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Elevated on One Scale

• Green: pathological

• Blue: Normal
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Elevated on Multiple Scales

c©Steven W. Zucker

9
182



Age Scale Not Informative
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• When a function maps regularly onto data points, it can be

extended to new data points.

• Fill-in missing data.

• check consistency of data.

• find ”outliers”
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Sensor Integration for Segmentation-1
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Sensor Integration for Segmentation-2
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Stereo Correspondence Problem

Recover the depth information from the disparity (difference of

image coordinates) of the corresponding image points.
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Matching Constraints in Stereo Correspondence

• Epipolar Constraint (geometric constraint).

• Ordering Constraint (heuristic constraint).

c©Steven W. Zucker

15
188



Frontal Parallel Plane Assumption in Stereo

Correspondence

• Assume surface is parallel (i.e. at constant depth) to the image

pairs.

• slide window; select position s.t. max SSD
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(left) (right) (our result)

(SSD) (graph cut) (belief prop)

Display (brightness = depth)
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Zitnick and Kanade, PAMI 2000.
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Next Step: Use contextual information geometrically

(“directed diffusion”) in stereo correspondence

Road map:

• Space Curves — Frenet

• Smooth Surfaces — Cartan

c©Steven W. Zucker
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Imposing Geometric Constraints Over Neighboring

Matching Pairs

• Build a local model (Frenet approximation) for every (possible)

curve point j.

• Predict the Position and the Frenet frame at a nearby position

i. Compare with the measurements at i. They should agree if i

comes from the same curve as j.

• Enforce such consistency and only retain those that are

compatible with their neighbors.

c©Steven W. Zucker
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• Each space tangent projects to a pair of image tangents.

• Both positional disparity (∆d) and orientation disparity (∆θ)

used.

c©Steven W. Zucker
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Results

(left) (right)

(view 1) (view 2) (scale: m)

c©Steven W. Zucker
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Results

(left) (right)

(matched-L) (matched-R) (result) (scale: m)

c©Steven W. Zucker
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Stereo Correspondence for Surface Reconstruction

• Goal: Dense reconstruction of smooth surfaces.

• Observe: Tangent plane Tp(M) (in solid lines) deviates from

the frontal parallel plane (in dotted lines).

S

Tp(S)
p

Cr

Cl
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Results

Left (reference) image Right image

GC+Subpixel Our Result

c©Steven W. Zucker
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Tammy-Normals

c©Steven W. Zucker
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Tammy-Zoom

Surface Normals Zoom

c©Steven W. Zucker

27
200



Organization of Spectral Information

c©Steven W. Zucker
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Munsell Color Patches

c©Steven W. Zucker
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Color Diffusion Map
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Color Diffusion Map through Retinal Pigments

c©Steven W. Zucker
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Color and geometry
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Future Work:

• Abstract Features (in feature space

• Geometry of fusion of boundary/texture/color data for

improved segmentation and classification.

• Fusion of spectral and spatial data

• (Fusion of left/right stereo pairs): feedback to image

segmentation following biological model.

c©Steven W. Zucker
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